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Multiply By To obtain
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megawatt (MW) 5.692x10% British Thermal Units per minute (BTU/min)
milliwatt per square meter (mW/m?) 0.02389 heat-flow units (hfu) (1 hfu = 1 pcal/cm? . g)
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(1 teu = 1x1073 mecal/em - s - °C)

For conversion of degrees Celsius (°C) to degrees Fahrenheit (°F), use the formula °F = 9/5°C + 32.

Sea level: In this report “sea level” refers to the National Geodetic Vertical Datum of 1929 (NGVD of 1929)—a
geodetic datum derived from a general adjustment of the first-order level nets of both the United States and
Canada, formerly called “Sea Level Datum of 1929.”
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HYDROTHERMAL SYSTEMS OF THE CASCADE RANGE,
NORTH-CENTRAL OREGON

By S.E. INGEBRITSEN, R.H. MARINER, and D.R. SHERROD

ABSTRACT

Quaternary volcanoes of the Cascade Range form a 1,200-
kilometer-long arc that extends from southern British Columbia to
northern California. The section of the Cascade Range volcanic arc
in central Oregon is characterized by relatively high Quaternary
volcanic extrusion rates and hot-spring discharge rates. Stable-
isotope data and measurements of hot-spring heat discharge
indicate that gravity-driven thermal fluid circulation transports
about 1 MW (megawatt) of heat per kilometer of arc length from
the Quaternary arc into Western Cascade rocks older than about
7 Ma (millions of years before present). Inferred flow-path
lengths for the Na-Ca-Cl thermal waters of the Western
Cascades are 10 to 40 kilometers (km), and an average topo-
graphic gradient as large as 0.1 separates the inferred recharge
areas from the hot-spring groups. Thermal-fluid residence times
are probably 102 to 104 years: sulfate-water isotopic equilibrium
indicates residence times of more than 102 years, and our inter-
pretation of stable-isotope data implies residence times of less
than 104 years.

A large area of near-zero near-surface conductive heat flow
occurs in the younger volcanic rocks of the central Oregon
Cascades, due to downward and lateral flow of cold ground
water. A heat-budget analysis shows that heat advected from
areas where rocks younger than about 7 Ma are exposed could
account for the anomalously high advective and conductive heat
discharge measured in older rocks at lower elevations. Magmatic
intrusion at rates ranging from 9 to 33 km3 per kilometer arc
length per million years could account for the total heat-flow
anomaly.

Two alternative models for the high heat flow observed in
older rocks on the flanks of the Cascade Range involve (1) an
extensive midcrustal heat source or (2) a narrower deep heat
source that is confined to the Quaternary arc and is flanked by a
relatively shallow conductive heat-flow anomaly caused by
regional ground-water flow. This lateral-flow model implies a
more limited geothermal resource base, but a better-defined
exploration target. Analysis of available regional gravity, mag-
netic, and electrical geophysical data does not clearly favor
either of the two models.

We simulated ground-water flow and heat transport through
two cross sections west of the Cascade Range crest: one in the
Breitenbush area, where there is no major arc-parallel normal
faulting, and one in the McKenzie River drainage, where major
graben-bounding faults exist. Measured temperature profiles,
hot-spring discharge rates, and geochemical inferences constrain
the results. In the simulations, the alternative conceptual models

for the deep thermal structure were represented as wide or
localized deep heat sources. We found that either model can sat-
isfy the observations. Thermal observations in the Breitenbush
area seem to require significant advective heat transfer,
whereas the sparser observations in the McKenzie River area
can be satisfied with either advection- or conduction-dominated
simulations. The numerical simulations provide some estimates
of regional-scale permeabilities: simulated bulk permeabilities of
about 1014 m? (meter squared) in the youngest (0-2.3 Ma) rocks
and 10717 m? in the oldest (18-25 Ma) rocks allow the thermal
observations to be matched. In general, permeability decreases
downsection, but for rocks of any age, permeability at very shal-
low (less than about 50 m) depths may be much higher than the
bulk permeability values required by the thermal observations:
this is indicated by high recharge rates in 0- to 7-Ma rocks
(greater than 1 meter per year) and well-test data from domestic
wells in rocks older than 7 Ma (which indicate permeability
values of 10714 to 10-12 m2),

The actual thermal structure is probably more complex than
either of the models considered here. Deep drilling in areas of
high heat flow in the older rocks would be the most definitive
test of the models. Comparison of natural heat discharge from
the central Oregon Cascade Range with that from the relatively
well-explored Taupo volcanic zone suggests that published
resource estimates for the Cascades are optimistic.

INTRODUCTION

The Cascade Range is a 1,200-km-long volcanic
arc that extends from southern British Columbia to
northern California. High-temperature igneous-
related geothermal resources are assumed to exist
in the Cascade Range (for example, Brook and oth-
ers, 1979), but their magnitude and extent are
poorly known. Several lines of evidence suggest
relatively high geothermal potential in the central
Oregon Cascade Range, a part of the arc character-
ized by relatively high rates of Quaternary volcanic
extrusion (Sherrod and Smith, 1990), hot-spring
discharge (Mariner and others, 1990), and conduc-
tive heat flow (Blackwell and others, 1982a, 1990a;
Blackwell and Steele, 1987; Blackwell and Baker,
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1988b). The central Oregon Cascade Range also
includes several silicic volcanic systems that are
probably young enough and large enough to retain
substantial amounts of heat (R.L. Smith and Shaw,
1975, 1979). Extrusion rates and hot-spring dis-
charge rates decrease north and south of the area,
and conductive heat flow decreases to the north
and possibly to the south.

The Cascade Range in Oregon is customarily
divided into two physiographic subprovinces, the
relatively uneroded High Cascades and the deeply
dissected Western Cascades (Callaghan and Bud-
dington, 1938). That distinction is useful here
because of the fundamental control that topography
exerts on regional hydrology. The High Cascades
subprovince forms the crest of the range and is
built mainly of permeable upper Pliocene and Qua-
ternary volcanic rocks that create a broad ridge
receiving heavy snowfall. The High Cascades are a
regional ground-water recharge area; approxi-
mately half of the incident precipitation infiltrates
and recharges ground-water systems. In contrast,
the Western Cascades is a deeply incised terrane
underlain by less permeable Oligocene to lower
Pliocene volcanic and volcaniclastic strata. The
boundary between the two subprovinces is con-
trolled partly by volcanic onlap and partly by major
normal faults. Topographically driven ground-wa-
ter flow from the High Cascades feeds springs to
the west and east. Most hot springs in the study
area discharge at nearly the same elevation in
deep valleys of the Western Cascades, as much as
20 km west of the High Cascades (fig. 1). One set
of hot springs discharges east of the Cascade
Range in a valley on the Deschutes-Umatilla
Plateau. No hot springs are found in the High
Cascades between latitudes 44° and 45°15' N,

Two end-member models describe the deep ther-
mal structure of the Oregon Cascade Range: one
model invokes an extensive, uniform midcrustal
heat source, the other a relatively narrow, spatially
variable heat source. The relative contribution of
regional versus localized heat sources is important
to understanding the accessible geothermal resource
base of the Cascade Range, and the heat-budget
analysis and numerical simulations discussed in this
report demonstrate implications of each model.

This report is a chapter in the U.S. Geological
Survey Professional Paper series “Geohydrology of
Geothermal Systems.” Previous chapters in this
series describe hydrothermal systems at Long
Valley, California; Hot Springs, Arkansas;
Yellowstone National Park; Klamath Falls and
Warner Valley, Oregon; and Ennis, Montana. The

GEOHYDROLOGY OF GEOTHERMAL SYSTEMS

series also includes surveys of hydrothermal sys-
tems over broader areas (for example, the State of
Utah and the Appalachians) and several related
topical studies.

PURPOSE AND SCOPE

This report focuses on the hydrothermal systems
of the Cascade Range in north-central Oregon. The
geologic and hydrologic settings are described and
geologic, geochemical, and geophysical data are
interpreted in terms of the characteristics of the
hydrothermal systems. Numerical simulation is
used to investigate alternative conceptual models
of the deep thermal structure. The study area in-
cludes a 135-km-long section of the arc between
latitudes 44° and 45°15' N. It lies generally south-
east of Portland, northeast of Eugene, and north-
west of Bend and includes parts of the Cascade
Range, Deschutes-Umatilla Plateau, and High
Lava Plains physiographic provinces (fig. 1).

PREVIOUS INVESTIGATIONS

Some of the results presented in this report have
been summarized elsewhere in abbreviated for-
mats. Ingebritsen and others (1989) estimated a
heat budget for the study area. Here, we present a
slightly revised heat budget and discuss its impli-
cations in a more comprehensive fashion. Mariner
and others (1989, 1990) used a chloride-flux
method to determine the discharge of hot springs
in the U.S. part of the Cascade Range. Their dis-
charge estimates for hot springs in the study area
are nearly identical to those presented here, but
the repeated sets of measurements described in
this report allow us to better assess the reproduc-
ibility of the results and to compare several solute-
inventory methods.

Most hot springs of the Cascade Range in Oregon
were described by Waring (1965), who reported
approximate locations, discharge temperatures, and
flow rates. Brook and others (1979) reported some
additional discharge temperature and flow-rate
data and also estimated reservoir temperature,
volume, and thermal energy. Mariner and others
(1980) reported the major-element chemistry and
stable-isotope composition of the hot springs and
calculated a suite of geothermometer temperatures.
Blackwell and others (1978, 1982a) suggested
several possible models for the relation between
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volcaniclastic rocks are widely exposed (fig. 3, unit
T3) (Priest and others, 1987, 1988; Black and
others, 1987; Walker and Duncan, 1989). Rocks of
this age include thick ash-rich sequences such as
the Breitenbush Tuff! of Priest and others (1987),
which underlies the area around Breitenbush Hot
Springs. The tuffaceous rocks are commonly altered
to zeolite and clay minerals, and primary perme-
ability is much reduced; however, the upper 300-
600 m is unaltered at least locally. An ash-flow tuff
in the upper part of the Breitenbush Tuff has been
proposed to control a thermal aquifer on the basis
of lithologic correlation and updip projection from a
drill hole to Breitenbush Hot Springs (Priest and
others, 1987).

Lava flows and tuff breccia, broadly andesitic in
composition, were deposited between 17 and 7 Ma
along the eastern edge of the Western Cascades
subprovince (fig. 3, unit T,). These rocks are less
than 100 m thick in the central part of the study
area (Black and others, 1987), but thicken to the
north and south, where as much as 1.5 km of
stratigraphic thickness is preserved (Priest and
others, 1988; Sherrod and Conrey, 1988). Regionally,
they form part of a middle and late Miocene volcanic
arc that was limited mainly to Oregon. These rocks
overlie the older, chiefly volcaniclastic sequence along
a pronounced angular unconformity.

Since about 7 Ma, basaltic andesite and basalt
lava have erupted from widespread, small shield
volcanoes exposed eastward from the eastern edge
of the Western Cascades into the Deschutes basin
and the Basin and Range (fig. 3, units T; and Qv).
The base of this stratigraphic interval approxi-
mately coincides with the “early High Cascade epi-
sode” of Priest and others (1983), whereas the
youngest part corresponds to the Quaternary volca-
noes of the modern arc. Volcanism of intermediate
and silicic composition has been only locally impor-
tant, but includes now-buried Miocene and Pliocene
volcanoes that erupted ash flows preserved in the
Deschutes Formation? east of the High Cascades
(G.A. Smith and others, 1987) as well as andesitic
to rhyodacitic lava erupted throughout the Quater-
nary in the vicinity of the Three Sisters (Taylor
and others, 1987) and Mount Jefferson (R.M.
Conrey, in Sherrod and Smith, 1989). All rocks
younger than about 7 Ma are generally unaltered
or altered only at the base of very thick strati-
graphic sections.

12Usage follows that of the Oregon Department of Geology and Min-
eral Industries.

GEOHYDROLOGY OF GEOTHERMAL SYSTEMS

The Quaternary rocks (0-2 Ma) are shown sepa-
rately not because of any major structural or
stratigraphic break but because high-temperature
geothermal resources are often related to Quater-
nary magmatism. Pre-Quaternary intrusions with
volumes less than about 1,000 km3 generally have
cooled to ambient temperatures (R.L. Smith and
Shaw, 1979). Most Quaternary rocks in the study
area are found in the High Cascades subprovince,
where they form the crest of the range from Mount
Wilson south (fig. 3, unit Qv). Quaternary silicic
rocks are of particular interest because silicic mag-
mas are probably erupted from storage chambers
in the upper crust, whereas basic magmas gener-
ally do not form large high-level storage chambers
(R.L. Smith and Shaw, 1975). Quaternary dacite
and rhyolite are confined to the areas between
Mount Jefferson and Olallie Butte and between
Three Sisters and the Sisters fault zone (fig. 3).

STRUCTURE

The prominent structural features in the study
area are en echelon, north-south-striking normal
faults that parallel the Quaternary arc (fig. 3). The
greatest offset has occurred along the Horse Creek
and Green Ridge fault zones, which define the mar-
gins of the central Oregon High Cascade graben
(G.A. Smith and Taylor, 1983). Farther north and
south the High Cascades subprovince is bounded
on either the east or west by normal faults but a
subsided central block seems to be absent (Sherrod
and Smith, 1989).

Displacement on the Green Ridge and Horse
Creek fault zones took place in late Miocene and
early Pliocene time. Motion along the Green Ridge
fault zone isolated the Deschutes basin from volca-
nic centers in the High Cascades beginning about
5.4 Ma (G.A. Smith and others, 1987). Rocks as
young as about 5 Ma are exposed at the top of the
650-m escarpment of Green Ridge (Armstrong and
others, 1975), whereas the downthrown block is
mantled by Quaternary and Pliocene sedimentary
deposits. Displacement is at least 1 km, on the
basis of ages of about 1.49 and 1.81 Ma from drill
core in the downthrown block (Priest and others,
1989; B.E. Hill, oral commun., 1991). Total dis-
placement along the fault and depth to the 5-Ma
strata in the downthrown block are unknown. The
Horse Creek fault zone has displaced 5- to 6-Ma
strata as much as 670 m down along one trace
north of the McKenzie River (Brown and others,
1980b); cumulative mapped offset is as much as
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850 m south of the McKenzie River (Priest and
others, 1988). Subsequent headward erosion by the
McKenzie River breached the escarpment by late
Pliocene time, and the basalt of Foley Ridge flowed
from a source in the High Cascades westward
across the fault trace and along the McKenzie
River valley sometime between 2.2 and 1.7 Ma
(Flaherty, 1981; Priest and others, 1988). The fault
has been inactive since the emplacement of the
basalt of Foley Ridge. Thus, demonstrable graben
subsidence is about 1 km; larger estimates require
buried intragraben faults, which are neither
supported or refuted by the available data.

The Sisters fault zone (fig. 3) strikes northwest-
southeast into the Cascade Range and is perhaps
an extension of basin-range faults such as the
Brothers fault zone (E.M. Taylor, 1981; MacLeod
and Sherrod, 1988). The Sisters fault zone is char-
acterized by relatively small displacement, mea-
sured in meters or tens of meters. Pleistocene lava,
pyroclastic flows, and gravel deposits are locally
deformed along the Tumalo fault segment of the
Sisters fault zone (E.M. Taylor, 1981), making it
one of the youngest known faults of the Cascade
Range in central Oregon.

Consortium for Continental Scientific Profiling
(COCORP) seismic reflection lines crossed the Cas-
cade Range between latitudes 44°10' and 44°15' N.
The seismic lines have high noise-to-signal ratios
and fail to establish the offset of the Horse Creek
fault zone (Keach and others, 1989). They stop
short of the Sisters fault zone.

Pre-late Miocene and older rocks exposed on
either side of the High Cascades generally dip
toward the High Cascades, perhaps forming a
synform beneath the High Cascades (Wells and
Peck, 1961). Such a regional-scale synform could
result from flexural loading of the elastic litho-
sphere by the growing Cascade arc (G.A. Smith and
others, 1989).

Development of graben-bounding faults was
accompanied by isostatic rebound west and east of
the breaks and intragraben subsidence (G.A. Smith
and others, 1989). Early Pliocene uplift in the
Western Cascades and on the Deschutes-Umatilla
Plateau led to deep entrenchment of the major
streams. Priest (1990) estimated that there was up
to 1 km of uplift west of the Horse Creek fault zone
between about 5.1 and 3.3 Ma.

Although early workers (for example, Thayer,
1936; Peck and others, 1964) mapped a series of
anticlines in the Western Cascades, only the 12- to
18-Ma northeast-trending Breitenbush anticline
has been confirmed by subsequent mapping and
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radiometric dating (Sherrod and Pickthorn, 1989).
Within the study area there are also a number of
11- to 17-Ma (Sherrod and Pickthorn, 1989) north-
east-trending folds on the Deschutes-Umatilla
plateau. (Folds are not shown on fig. 3; see Sherrod
and Smith [1989] for locations.)

QUATERNARY EXTRUSION RATES

The intrusion rate at shallow crustal levels
contributes significantly to accessible geothermal
energy. The intrusion rate is unknown, but several
lines of evidence support the idea that Cascade
Range extrusion rates are indices of the overall
rate of magmatism. First, there is a close positive
correlation between Quaternary extrusion rates
and regional conductive heat flow (Sherrod and
Smith, 1990). Second, there is a positive correlation
between extrusion rates and the heat discharged
by hot springs in various segments of the arc
(Mariner and others, 1990). Finally, there is a
worldwide positive correlation between volcanic
productivity and plate convergence rates (Wadge,
1984). This implies a correlation between the vol-
umes of intrusive and eruptive rock if one assumes
that the overall rate of magmatism is also corre-
lated with the plate convergence rate.

Quaternary extrusion rates vary along the length
of the Cascade Range volcanic arc, and perhaps the
highest long-term rates are found in the area
between Mount Jefferson and Crater Lake, Oregon
(Sherrod and Smith, 1990). Sherrod (1986) drew a
number of cross sections and calculated a 0- to 3.5-
Ma extrusion rate of 3 to 6 km3/km arc length/m.y.
for this area. He also calculated shorter-term
extrusion rates (0.25-0.72 Ma and 0-0.25 Ma)
between latitudes 43° and 44° N., and concluded
that the extrusion rate had not fluctuated measur-
ably in the last 3.5 Ma.

Rate estimates by Priest (1990) for the central
Oregon part of the Cascade Range are much
higher, ranging from 9.9 km3km arc length/m.y.
for 0.73- to 3.9-Ma to as high as 15.8 km%km arc
length/m.y. for 0- to 0.73-Ma. The contradictory
rate estimates are attributable largely to a differ-
ence of opinion regarding total graben subsidence
and volcanic fill. We note, however, that Priest’s
(1990) very high short-term rate requires rocks
younger than 0.73 Ma to have an average thickness
of 350-400 m over the area that they cover (the
area shown in fig. 7 of Priest, 1990). This great av-
erage thickness seems unlikely in view of the scat-
tered outcrops of reversely polarized volcanic rocks
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at or near the range crest (Sherrod and Smith,
1989). Also, dated core samples from one drill hole
in the High Cascades northwest of Mount Jefferson
show that approximately 600 m of volcanogenic
rocks were deposited during the last 3 m.y. or so
(Conrey and Sherrod, 1988). Assuming a constant
extrusion rate, this thickness-to-age relation
suggests that only about 145 m of 0- to 0.73-Ma
rocks are present. Cross sections by Black and
others (1987) from the Santiam Pass area are con-
sistent with this lesser thickness, indicating an
average thickness of about 480-620 m for the
entire Quaternary and upper Pliocene sequence.

HYDROLOGIC SETTING

The western half of the study area (west of the
Cascade Range crest) is drained by the Clackamas,
North Santiam, South Santiam, and McKenzie
rivers, all of which are tributaries of the
Willamette River. The eastern half of the study
area is drained by the Deschutes River and its
major tributaries, the Warm Springs and Metolius
rivers. Both the Willamette and Deschutes rivers
are tributaries of the Columbia River, which forms
the Washington-Oregon border north of the study
area (fig. 1).

The Metolius and Deschutes rivers are fed by
large springs rising from aquifers in Pliocene and
Quaternary volcanic rocks, and their natural flow
is characterized by relatively low seasonal variabil-
ity. This characteristic is shared to some extent by
the McKenzie and North Santiam rivers. The an-
nual maximum daily flow of the Metolius near its
confluence with the Deschutes is typically only 2 to
4 times as great as the minimum daily flow. The
other major streams in the study area have a
greater degree of seasonal variability that is typi-
cal of snowmelt-fed mountain streams where
ground-water storage is less significant. The South
Santiam River exhibits the most extreme seasonal
variability; its maximum daily flow above the dams
near the study area boundary (fig. 1) is typically
100 to 400 times as great as the minimum flow.

PRECIPITATION

The Cascade Range forces air masses moving
generally west-to-east to ascend and release mois-
ture. Average annual precipitation in the study
area ranges from more than 100 inches in parts of
the Western and High Cascades to less than 10
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inches along the lower Deschutes River3. Precipita-
tion decreases abruptly east of the Cascade Range
crest (fig. 4). The western slope is densely veg-
etated with forests dominated by Douglas fir
(Pseudotsuga menziesii). The drier eastern slope is
more sparsely vegetated; common plant species in-
clude yellow (Ponderosa) pine (Pinus ponderosa)
and several species of sagebrush (Artemisia sp.).

West of the Cascade Range about half of the
total precipitation falls from December through
February. Most of the remainder falls in the
autumn and spring, with very little in the summer,
East of the Cascade Range about 90 percent of the
precipitation falls in autumn, winter, and spring,
and about 10 percent in the summer (National
Oceanic and Atmospheric Administration, 1985).

The sodium (Nat*) and chloride (C17) contents of
precipitation in the study area are of interest relative
to the chloride-flux studies discussed in the section
“Thermal Waters.” There are no precipitation-
chemistry data from the study area itself, but pub-
lished data are available from sites that surround
it. Junge and Werby (1958) reported average Na*
and Cl~ values at Salem (lat 44°55' N., long 123°
W.) and Medford (lat 42°22' N., long 122°52' W.) for
the period of July 1955 to June 1956, and since
1984 the U.S. Geological Survey has collected
weekly precipitation chemistry data at Bull Run
Reservoir (lat 45°26'55" N., long 122°08'45" W.) and
Silver Lake (lat 43°07'01" N., long 121°04' W.). The
U.S. Geological Survey data are included in annual
reports entitled “Water Resources Data for Oregon.”
The available Na* and Cl~ data (in milligrams per
liter) are tabulated below. The average composition
of seawater is also shown for comparison:

Average Average Average
Location Date Nat Cl- Na*/Cl-
Bull Run Res. — 1984-1986 0.37 0.67 0.55
Salem —-eemmene- — 1955-1956 .48 .68 71
Medford —--emmmmmav 1955-1956 .15 .22 .68
Silver Lake - 1984-1986 .11 .15 72
Seawater ------—- — 10,500 19,000 .55

STABLE-ISOTOPE DATA

Stable isotopes are commonly used to infer
ground-water source areas and mixing patterns.
The mean isotopic composition of precipitation at a
particular location is approximately constant over
time periods that are long enough to minimize the
effects of seasonal variations and short enough to

3We report precipitation values in U.S. Customary units because our
precipitation data are obained from a non-SI isohyetal map.
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Nevada crest, whereas our data show 8D decreas-
ing at only about 16 o/oo per 1,000 m west of the
Cascade Range crest.

GROUND-WATER RECHARGE ESTIMATES

Late-summer stream discharge (baseflow) in the
Cascade Range consists almost entirely of ground-
water contributions. The unit baseflow (baseflow

122°30"

122°00°

GEOHYDROLOGY OF GEOTHERMAL SYSTEMS

per unit area), an index of ground-water recharge,
has been estimated for five basins west of the Cas-
cade Range crest (fig. 4). These basins encompass
diverse rock units (fig. 7). Within each basin,
stream flow is either unregulated by artificial
structures or regulated in such a way that diver-
sions and reservoir storage can be accounted for.
Hydrographs of monthly mean discharge for each
basin are shown in figure 8.

121°30°
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45°15'

asas | 14182500

Swim Warm Spring ;. \‘.

- ?'.Austin ; ]
Hot \
Springs )
3 S Bagby Hot Springs
ﬁ T82 I/'
XN !
Breitenbush )

Hot Springs " ™~

Mt. Hood

T
.
\

Cascade Range
crest

’
’
.

)

¥ Mt. Jefferson

————— BOUNDARY OF DRAINAGE BASIN—Number

—— GEOLOGIC CONTACT—See table 1 for

EXPLANATION

identifies basin: 1, Oak Grove Fork of the
Clackamas River; 2, lower Clackamas River
between Three Lynx and Estacada; 3, upper
Molalla River; 4, Little North Santiam River;
5, South Santiam River

FAULT—Dashed where inferred

explanation of geologic map units

141982500
A U.S. GEOLOGICAL SURVEY STREAM-GAGING
STATION AND NUMBER
4415
o THERMAL SPRING
~0O0  NONTHERMAL MINERAL SPRING
. 0 20 MILES
Foley Spnngsl,ﬂ = e | ]
A 0, 20 KILOMETERS

Ficure 7.—Surficial geology and locations of streamflow-gaging stations for basins where ground-
water recharge was estimated. Geology from Sherrod and Smith (1989).
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West of Cascade Crest

t—>
EXPLANATION

HOT SPRING—AU, Austin; BA, Bagby;
BR, Breitenbush; BI, Bigelow; BE, Belknap;
FO, Foley; TE, Terwilliger; KA, Kahneeta %

NONTHERMAL SPRING OR WELL

East of Cascade Crest

Scale of diameters
0
100
1000

10,000 %

Area of circle indicates "1_

dissolved solids, in

milligrams per liter
Number near circle

indicates the

source of

data in

table 4

Mot o e /

.\\ o.Oo".f':'- )/

.\\ ;Q.;....: W,
/e

Ficure 9.—Trilinear diagram showing analyses of nonthermal ground waters and hot
springs expressed as percentage of total milliequivalents per liter. Waters in
which more than 50 percent of cations are Mg, Na+K, or Ca are described as Mg,
Na, or Ca waters, respectively. Similarly, waters in which more than 50 percent of
anions are SOy, Cl, or CO3 +HCO; are described as SOy, Cl, or HCO3 waters. Any
simple mixture of hypothetical waters A and B will plot on line AB on diamond-
shaped plotting field.
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Sodium-bicarbonate (Na-HCOg4) waters that were
sampled at several widely separated sites in the
Western Cascades and on the Deschutes-Umatilla
Plateau do not appear to be associated with a par-
ticular near-surface lithology. These waters are
characterized by a predominance of sodium over
other cations that ought to be observed in water
that has dissolved albite (Hem, 1985). Two unusual
low-discharge springs in the Breitenbush Hot
Springs area (analyses 11, 13) are characterized by
Na exceeding 95 percent of total cations and HCO4
exceeding 95 percent of total anions (fig. 9).

Mixing of Na-Ca-Cl thermal water with dilute
mixed cation-bicarbonate water may explain the
major-element geochemistry of the more dilute Na-
Cl waters sampled west of the Cascade Range
crest (analyses 21, 28, 30). Such a process is per-
haps the most plausible explanation for the
sample from a 62-m-deep well in the Quaternary
arc about 7.5 km east-southeast of Belknap
Springs (analysis 30). Surface waters in the vicin-
ity have somewhat elevated Cl concentrations, and
a well about 2.2 km west of Belknap Springs dis-
charges Belknap-equivalent thermal water
(Ingebritsen and others, 1988), suggesting a “leaky”
thermal system in the area.

THERMAL WATERS

In this section, we present data suggesting that
gravitationally driven thermal fluid circulation trans-
ports significant amounts of heat from the Quaternary
arc into Western Cascade rocks older than about 7
Ma. Inferences regarding the generalized pattern of
thermal fluid circulation are based on the locations of
the hot springs relative to regional topography, geo-
logic structures, and possible heat sources and on the
isotopic composition of the thermal waters. Estimates
of the heat transported by various hot-spring systems
are based on chemical geothermometry and hot-spring
discharge measurements.

LOCATION OF HOT SPRINGS

Hot springs in the study area discharge from Mi-
ocene or Oligocene rocks at elevations of 440-680
m (see table 2 for hot-spring elevations). With the
exception of Bagby Hot Springs, they are found
near major streams that originate in the Quater-
nary arc, in deeply incised valleys that focus the
discharge from regional ground-water flow systems
(fig. 11). The presence of hot springs within a rela-
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tively narrow elevation range implies that topogra-
phy is a major control on thermal-water discharge.
Most and perhaps all of the hot springs are
located near the surface exposures of structurally
or stratigraphically controlled permeable conduits.
The four hot springs in the McKenzie River drain-
age (fig. 11) are located near faults or fracture
zones that likely interrupt the flow of ground water
down the hydraulic gradient from the Quaternary
arc (Priest and others, 1988). Three of the four are
close to and probably associated with the Horse
Creek fault zone (fig. 11); the fourth and westernmost
is near the older (older than 6.3 Ma), down-to-the-
east Cougar Reservoir fault zone (Priest and
others, 1988). Austin, Breitenbush, Bagby, and
Kahneeta Hot Springs are not directly associated
with any mapped structures. However, Sherrod and
Conrey (1988) suggest that a zone of northwest-
southeast-trending faults (fig. 11) may connect
Austin Hot Springs to the Mount Jefferson area.
Drill-hole data suggest the presence of a
stratigraphically controlled thermal aquifer in the
Breitenbush Hot Springs area. Thermal fluid was
encountered in a well 3 km south-southeast of
Breitenbush Hot Springs (Priest, 1985) in the same
stratigraphic unit as the hot-spring orifices (Priest
and others, 1987). Both the aquifer and the hot
springs are found in the upper part of Sherrod and
Smith’s (1989) map unit Tag (see table 1 for de-
scription of map units). Additional evidence for a
stratigraphically controlled thermal aquifer in
the Breitenbush area is provided by temperature-
gradient data that define a 30-to 50-km? area of

“anomalously high heat flow south and east of the

hot springs (Blackwell and Baker, 1988b).
Terwilliger Hot Spring issues at approximately the
same stratigraphic position as the thermal aquifer
in the Breitenbush area (fig. 3).

Bagby Hot Springs is unique among the Western
Cascade hot springs in that it is isolated from the
Quaternary arc by major drainage divides. Its loca-
tion and chemical composition (discussed under
“Thermal Water Chemistry”) suggest that Bagby is
the product of relatively local deep circulation, rather
than regional-scale lateral ground-water flow.

The Kahneeta Hot Springs group is in the
Deschutes-Umatilla Plateau physiographic province
and includes a number of springs along a 3-km
reach of the Warm Springs River (fig. 11).
Kahneeta is the only hot-spring group in the study
area that lies east of the Quaternary arc, and it is
more areally extensive than any hot-spring group
in the Cascade Range. The deeply incised valley of
the Warm Springs River may be a regional
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uncertain because this technique requires knowl-
edge of the porosity, density, and thorium and ura-
nium contents of the rock through which the
waters have circulated. The available helium iso-
tope data indicate appreciable 3He, which in this
environment probably comes from the mantle, and
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THERMAL-WATER CHEMISTRY

Most of the thermal waters in the study area are
Na-Cl or Na-Ca-Cl waters of near-neutral pH.
Austin Hot Springs discharges Na-Cl waters;
Breitenbush Hot Springs and the hot springs in the
McKenzie River drainage (Bigelow, Belknap, Foley,
and Terwilliger) discharge Na-Ca-Cl waters; Bagby
Hot Springs discharges Na-mixed anion waters;
and Kahneeta Hot Springs discharges Na-HCOj,
waters (table 5, fig. 9).

The definition of Na-Ca-Cl waters (2mc¢, > 2mgo,
+ mycog +2mco4) implies that at least part of the
Ca?+ is electrically balanced by Cl-. The presence
of a CaCl, component is an unusual chemical sig-
nature shared by many rift-zone hydrothermal
brines, some oil-field brines, fluid inclusions in ore
minerals, and a few saline lakes (Hardie, 1983). In
North America, thermal Na-Ca-Cl waters occur pri-
marily in the Salton Trough and in the Columbia
embayment, which encompasses northwest Oregon
and southwest Washington and may be built on
Cenozoic oceanic crust (Hamilton and Myers, 1966).

A number of processes have been suggested to
explain the origin of Na-Ca-Cl waters. Hardie
(1983) presented a strong empirical case for origin
by basalt-seawater interaction for the Reykjanes,
Iceland, hydrothermal system. There, Na-Ca-Cl
waters appear to develop from Na-Cl waters by
albitization of plagioclase:

anorthite
CaAl,Si,Oq + 2Na* + 4H,Si0, =
albite
2NaAlSizOq + Ca2* 4 8H,0

where anorthite represents the calcium component
of intermediate plagioclase. The resulting increase
in dissolved calcium causes precipitation of calcite
(CaCOy) and anhydrite (CaSO,). Calcite precipi-
tation can lead to very low HCOg concentrations
(table 5), unless a source of CO, is present.
Another possible control on Na/Ca ratios in Na-Ca-
Cl waters is conversion of plagioclase or calcium-
bearing zeolites to analcime (NaAlSi, Oy - H,0)
(Mariner and others, 1993). In either case
(albitization or analcimization), Na-Ca-Cl thermal
waters can be regarded as having evolved from Na-Cl
waters by alteration of a calcium-bearing mineral.
Mariner and others (1980) and Ingebritsen and
Sorey (1985) suggested that Na-Cl and Na-Ca-Cl
thermal waters of the Cascade Range obtain high
concentrations of Na and Cl by circulating through
rocks deposited in a marine environment. However,
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Conrey and Sherrod (1988) described xenoliths
from the Cascade Range that appear to have lost
Na and Cl during recrystallization to quartz, potas-
sium feldspar, and illite, and suggested that the
source of these constituents in the thermal waters
could be altered volcanic glass. Mariner and others
(1989) noted that bromide to chloride weight ratios
in the thermal waters (table 5) are similar to those
in seawater (3.5 x 1073) rather than volcanic ash
(1.5 x 10-3) for Mount St. Helens ash), and again
suggested a “marine” Cl source. However, the Br/Cl
ratio in Japanese volcanic rocks varies within a
range that brackets the seawater ratio (1-6 x 1073;
Brehler and Fuge, 1978).

Mass-balance considerations imply the presence
of a source of chloride in addition to the volcanic
rocks. The chlorine contents of Cascade Range
volcanic rocks are highly variable and poorly
known, but probably quite low. H.N. Elsheimer
(U.S. Geological Survey, written commun., 1990)
obtained values of 160+230 mg/kg for nine samples
of Eocene or younger volcanic rocks. About 70 km3%km
arc length/m.y. of volcanic rocks with an average
Cl content of 160 mg/kg would be required to
supply the current flux of chloride from hot springs
(about 120 g/s distributed over the 135 km of arc
length in the study area). This rate is more than
an order of magnitude greater than the long-term
volcanic production rate of 3-6 km3%km arc length/m.y.
(Sherrod and Smith, 1990).

A large discrepancy between chlorine-based water-
rock ratios and those based on 180 also suggests
that only a minor amount of the chloride in the
thermal water is derived from leaching of volcanic
rock. Lithophile elements that are not major com-
ponents in secondary minerals (including Cl, B,
and Li) can be used to calculate water-rock ratios
analogous to those calculated on the basis of 180
contents (White and Peterson, 1991). For the Long
Valley, California, hydrothermal system, White and
Peterson (1991) showed that chlorine contents
(Cloek/Clwater) give a range of water-rock ratios
(1.1 to 2.5) very similar to the range calculated on
the basis of 180 composition (1.5 to 2.3). They also
showed a general relation between fluid and rock
chlorine contents for hydrothermal systems con-
tained principally in Quaternary rhyolitic tuffs,
with Clyck/Clyater ratios falling in the range of 0.5
to 2. Again taking 160 mg/kg as representative of
the rock chlorine content, Cl ;1 /Clyater ratios for
the study area range from 0.1 to 0.4, whereas the
water-rock ratios based on 180 contents are 3+1.

The most probable sources of chloride are marine
rocks and magmatic volatiles. As noted under
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“Stratigraphy,” lower and middle Eocene (about
44-58 Ma) marine rocks likely extend beneath the
study area. A magmatic source also seems feasible:
relatively high 3He/*He values for the Na-Ca-Cl
thermal waters (table 5) indicate that some dis-
solved constituents are of magmatic origin, and
most magmatic chloride will partition to an aque-
ous phase. If we assume conservatively that the
chloride content of the magma is 0.1 weight percent
(Burnham, 1979), an intrusion rate of 10 km%km arc
length/m.y. could supply the current flux of chloride
from the hot-spring systems of the study area (about
1 g/s per km arc length). This intrusion rate is within
the range of rates (9-33 km3%km arc length/m.y.)
calculated in the “Heat Budget” section.

Bagby Hot Springs discharges dilute high-pH Na-
mixed anion waters (table 5) and is also unique
among the Western Cascade hot springs in that it
is isolated from the Quaternary arc by major drain-
age divides. This location, chemical composition,
and a relatively low 3He/4He ratio (table 5) suggest
that Bagby is the product of relatively local deep
circulation. Its Na-mixed anion waters are similar
to thermal waters associated with granitic rocks of
the Idaho batholith (Mariner and others, 1980).
Tertiary granitic or dioritic rocks are locally ex-
posed in the Bagby Hot Springs area (Walker and
others, 1985) and may be more widespread at
depth. The chloride-rich Na-HCOg waters of
Kahneeta Hot Springs are also markedly different
from other thermal waters in the study area. Their
chemical composition somewhat resembles that of
several hot springs in the Long Valley-Mono Lake
area, California (Mariner and others, 1977).

GEOTHERMOMETRY

Many different chemical and isotopic reactions
are used as geothermometers (geochemical ther-
mometers) in order to estimate fluid temperatures
in the deep parts of active hydrothermal systems
(see, for example, the review by Fournier, 1981).
Those most commonly used, listed in table 6, are
based on the temperature-dependent solubility of
silica, temperature-dependent exchange reactions
that control the ratios of certain cations in solution,
or the temperature-dependent fractionation of oxygen
isotopes between water and dissolved sulfate.

The quartz, cation (Na-K-Ca), and SO,-H,0
geothermometers give disparate results when
applied to the Na-Cl and Na-Ca-Cl waters of the
study area. Only for Breitenbush Hot Springs are
all three geothermometers in reasonably good
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agreement (within 30°C). For the other Na-Cl and
Na-Ca-Cl springs the Na-K-Ca temperatures are
45-84°C, the silica (quartz) temperatures are 99—
132°C, and the SO,-H,O temperatures are 117-
181°C (Mariner and others, 1993). The rates of the
S0,-H,0 exchange reactions are very slow relative
to silica geothermometry and cation exchange reac-
tions; if equilibrium is attained at high tempera-
tures there is little reequilibration as the water
cools during movement to the surface (Fournier,
1981).

The retrograde solubility of anhydrite can pro-
vide another geothermometer that indicates maxi-
mum temperature (Ellis and Mahon, 1977).
Because excess calcium is produced by alteration of
plagioclase, the Na-Cl and Na-Ca-Cl thermal
waters are likely to be saturated with anhydrite at
depth. Using anhydrite solubility to estimate aqui-
fer temperatures is not straightforward because
the solubility depends on two species (Ca2* and
SO,2") that can enter into complexes and whose ac-
tivities depend upon the temperature and ionic
strength of the water. Mariner and others (1993)
used the solution-mineral equilibrium code
SOLMINEQ.88 (Kharaka and others, 1988) to
determine the temperatures at which the Na-Cl
and Na-Ca-Cl thermal waters were saturated with
anhydrite.

Calculated anydrite saturation temperatures
agree remarkably well with the SO,-H,0 tempera-
tures of the Na-Cl and Na-Ca-Cl waters in the
study area (to within 13°C; Mariner and others,
1998). The SO4,-H,0 and anhydrite geother-
mometers are completely independent, so their
close agreement is good evidence that the tempera-
tures estimated by these methods are correct.

Anhydrite has not been reported from drill holes
in the study area, but most drilling has been too
shallow to encounter zones of thermal fluid circula-
tion. In general, it is rare to recover anhydrite in
cuttings from geothermal wells, because anhydrite
will dissolve in the relatively cool drilling fluids.

In table 5 we list anhydrite saturation tempera-
tures for the Na-Cl and Na-Ca-Cl waters, and an
average of the silica and Na-K-Ca temperatures for
the Na-mixed anion (Bagby) and Na-HCO,
(Kahneeta) waters. For Bagby and Kahneeta the
silica and Na-K-Ca temperatures are in good agree-
ment. The anhydrite saturation temperatures are
significantly higher, but these relatively low-
calcium waters may never have been saturated
with anhydrite.

Mariner and others (1993) suggested three possible
explanations for the low temperature estimates



L30

GEOHYDROLOGY OF GEOTHERMAL SYSTEMS

TABLE 6.—Commonly used geothermometers

Geothermometer Equation

Reference

1,309
Quartz T ——
5.19 — log C

(no steam loss)

- 273.15

Fournier and Rowe, 1966

where C is dissolved silica

concentration, in mg/L

1,647
Na-K-Ca T

" log(Na/K)+B[log(VCa/Na)+2.061+2.47

Fournier and Truesdell, 1973

where B = 4/3, T < 100°C
=1/3, T > 100°C
and Na, K, and Ca concentrations

are in mg/L

A%0(S0,2- —H,0)

1,000 Ina = 2.88(10672) — 4.1

Mizutani and Rafter, 1969

1,000 + 2'80(HSO,")

where o =

1,000 + 9180(H,0)

and T is in kelvins

yielded by the Na-K-Ca geothermometer: (1) that
the Na-Cl and Na-Ca-Cl waters are lower in Pgo,
than the waters from which the geothermometer
was empirically derived; (2) that the relatively high
calcium concentrations cause anomalously low tem-
perature estimates; or (38) that potassium concen-
trations were decreased by lower-temperature
water-rock interaction as the thermal fluid moved
laterally in an outflow structure and cooled. They
noted that the Na-K-Ca temperature of the rela-
tively CO, -rich Breitenbush Hot Springs waters
(Pgo,~ 0.01 bar) is about 70°C hotter than those
estimated for the other Na-Cl and Na-Ca-Cl
springs (Pcg,~ 0.001 bar at the anhydrite satura-
tion temperatures). The low Pgq, may be related to
the elevated calcium concentrations, which force
precipitation of calcite as well as anhydrite and
may ultimately remove virtually all of the dis-
solved carbon. The K-Mg geothermometer. of
Giggenbach (1986) resets quickly to lower tem-
peratures. The relatively low K-Mg and silica
geothermometer temperatures for thermal waters
in the study area may represent temperatures in
an outflow structure (Mariner and others, 1993).

RESIDENCE TIMES

As noted above, there does not appear to be any
absolute way to estimate residence times for the
Western Cascade thermal waters. The precipitation
of calcite that accompanies the evolution of Na-Ca-

‘Cl waters precludes carbon-14 dating, as does the

probable presence of magmatic sources of CO,. The
high chloride content of the Western Cascade ther-
mal waters would complicate chlorine-36 dating.
However, residence times can be constrained indi-
rectly on the basis of other geochemical indicators.
Our interpretation of stable-isotope data in terms
of Holocene recharge suggests maximum residence
times of about 10,000 years, and the kinetics of
sulfate-water oxygen-isotope equilibration can be
used to calculate minimum residence times for the
Na-Cl and Na-Ca-Cl thermal waters. Calculated
equilibration times for hot-spring waters of the
study area range from 40 years (Austin Hot
Springs) to 2,000 years (Foley Springs). The time
required for equilibration decreases with increasing
reservoir temperature and increases with increas-
ing pH (log ty= 2.54 [10%T] + b, where ¢, is the
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half time of exchange in hours, T is absolute tem-
perature, and b is —-1.17 at pH 7 and 0.25 at pH 8:
McKenzie and Truesdell, 1977).

HOT-SPRING DISCHARGE RATES

The discharge rates of hot springs in the study
area were determined on the basis of downstream
increases in the sodium and chloride loads of
nearby streams. The central Oregon Cascade
Range is an ideal environment for application of
this “solute inventory” method, because the ther-
mal waters are rich in sodium and chloride (table
5) and the streams are generally very dilute
(Ingebritsen and others, 1988). Mariner and others
(1990) presented solute-inventory discharge esti-
mates for most of the hot springs in the U.S. part
of the Cascade Range. Here we discuss a more de-
tailed set of measurements from the study area,
where repeated determinations allow us to compare
several solute-inventory methods and to assess the
reproducibility of the results.

Earlier published discharge values for hot
springs in the study area (Waring, 1965; Brook and
others, 1979) were based on visual estimates or
direct measurements of individual orifices, and
tend to be lower than the solute-inventory values
reported here, perhaps because these other meth-
ods cannot account for diffuse discharge or leakage
directly into streams. Most thermal springs in the
Cascade Range discharge from multiple orifices
near major streams, and thermal water often dis-
charges directly into the streams.

The chloride-inventory method was first used at
Wairakei, New Zealand, to measure pre-exploitation
discharge (Ellis and Wilson, 1955). The discharge
rate of a hot-spring group (Q,) is calculated from
the chloride concentration upstream (Cl,) and
downstream (Cly) of the hot springs, the chloride
concentration in the thermal water (Cl,), and the
discharge rate of the stream (Q,):

Q.(Cly - C1)
(1, - C1,)

¢ =

The concentration of sodium can be substituted
for chloride concentration to obtain an indepen-
dent, though less reliable, check of the hot-spring
discharge rate. Sodium concentrations in streams
are roughly an order of magnitude higher than
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those in precipitation, indicating that water-rock
reactions occurring at relatively shallow depths
release significant amounts of sodium. In contrast,
chloride concentrations in streams above the hot-
spring groups are within or near the range of aver-
age values in precipitation at sites that surround
the study area (0.15-0.68 mg/L; see the discussion
of precipitation in the “Hydrologic Setting” section).
Because there is a significant nonthermal source of
sodium, the discharge estimates based on chloride
increases are considered to be more reliable, par-
ticularly where the upstream and downstream
sampling sites are widely separated.

Grab samples or integrated samples were col-
lected both upstream and downstream from each
hot-spring group, and the discharge rate of the
stream was measured at the downstream sample
site. The “grab” samples were collected at a single
point in the stream, whereas “integrated” samples
were collected across the entire width of the
stream. For well-mixed streams these methods will
give identical results. Many of the downstream
sample sites are near permanent U.S. Geological
Survey stream-gaging stations; elsewhere, stream
discharge was measured by standard wading tech-
niques (Buchanan and Somers, 1969). Most of the
stream discharge values are accurate to within 10
percent. Where possible, additional samples were
collected 15 to 40 km downstream from the hot-
spring groups to detect leakage of thermal or min-
eral waters away from obvious spring sites.

The values listed in table 5 represent our best
estimates of the hot-spring discharge rates, but in
some cases there is a considerable degree of uncer-
tainty (table 7). The discharges of Terwilliger,
Austin, and Kahneeta Hot Springs have been
established to within £10 percent; the values cited
for Bigelow and Belknap (combined) and
Breitenbush Hot Springs may be +15 percent, and
the discharge of Foley Springs is known only to
within +40 percent.

From each complete set of downstream measure-
ments (table 7), hot-spring discharges were calcu-
lated in three ways: (1) by the sodium increase; (2)
by the chloride increase; and (3) by using a two-
component mixing model. In the mixing-model
approach, the Na/Cl ratio of the thermal compo-
nent was assumed to be that of the nearest hot
spring. The Na/Cl ratio of the nonthermal compo-
nent was assumed to be 5.4. This background ratio
is obtained from a linear least-squares fit to the
stream-chemistry data of Ingebritsen and others
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(1988), if samples obtained downstream from
known sources of thermal or mineral water are
omitted. A typical hot-spring-discharge calculation
is summarized in figure 13.

There are several possible reasons for the dis-
crepancies among the various calculated discharge
values (table 7). Analytical accuracy is a significant
factor for relatively large streams where the down-
stream sodium and chloride values are relatively
low. The Cl values listed in table 7 are probably
accurate to £0.15 mg/L and the Na values to £0.1
mg/L. There is also uncertainty regarding the
actual upstream Na and Cl values in a number of
cases where simultaneous upstream samples are
unavailable, and Na and Cl increases were calcu-
lated based on average upstream values or up-
stream values from other dates. There may be
significant seasonal fluctuation in these back-
ground values. Incomplete mixing of thermal and
nonthermal waters may be a factor in cases where
grab-sample data were used. Finally, there may be
some seasonal variation in the amount of thermal
water entering the streams. M.L. Sorey and G.W.
Moeckli (U.S. Geological Survey, written commun.,
1990) observed significant seasonal variation in the
discharge of hot springs south of Lassen Volcanic
National Park, California, during the period 1983—
88. For example, @, averaged 19.5 L/s at their site
MC-36, but maximum wintertime @, values ap-
proached 25 L/s and minimum summertime values
were near 14 L/s. Sorey and Moeckli attributed

10 T T T
Background sodium/chloride ratio

Streams without thermal or ]
/ mineral water input
A O

Added
sodium

Austin Hot  _|
Springs
sodium/chloride
ratio

2 Clackamas River 7]
® Above Austin Hot Springs

O Below Austin Hot Springs

1 { 1

0 2 4 6 8
CHLORIDE CONCENTRATION, IN MILLIGRAMS PER LITER

Added chloride

SODIUM CONCENTRATION,
IN MILLIGRAMS PER LITER

0

FiGURE 13.—Example showing how hot-spring discharge is cal-
culated by solute-flux methods. Discharge of Clackamas
River was 9,400 L/s; hot-spring discharge was determined to
be 120 L/s by chloride-increase, sodium-increase, and mixing-
mode! methods (table 7, Austin Hot Springs 8/15/85).

GEOHYDROLOGY OF GEOTHERMAL SYSTEMS

this seasonal variation to ground water-surface
water interaction.

Total hot-spring discharge in the study area
(220420 L/s) amounts to less than 0.2 percent of
the estimated ground-water recharge in the Qua-
ternary arc (greater than 1 x 10% L/s, based on an
estimated recharge rate greater than 26 x 10~ m/s,
listed in table 3, and about 4 x 10 m? of Quater-
nary rock exposed in the study area). No signifi-
cant additional discharges of saline water were
indicated by analyses of samples collected 15 to 40
km downstream from the hot-spring groups, with
the exception of samples from the U.S. Geological
Survey streamflow-gaging station on the McKenzie
River east of Vida (table 7). At this site, located
approximately 35 km downstream from Belknap
Springs, the chloride flux appears to be greater
than that attributable to the hot springs upstream.
However, the low concentration of chloride in the
Vida samples creates large uncertainties in the calcu-
lated chloride-flux values. Thermal-fluid occurrences
in the McKenzie River drainage are discussed in
greater detail in the section “Numerical Simulations.”

HEAT TRANSPORT

The geochemical evidence summarized above
indicates that the thermal waters are recharged in
the Quaternary arc; therefore the hot-spring
systems transfer heat from the Quaternary arc to
the older rocks on the flanks of the Cascade Range.
One measure of the heat transported advectively
by a hot-spring system is given by the product A =
Qpc(T, — 5), where @, is the hot-spring discharge
(table g), p is an appropriate fluid density, ¢ is heat
capacity of the fluid, Ty is a chemical geo-
thermometer temperature (table 5), and 5°C is a
reference temperature appropriate to the hot-
spring recharge elevations inferred from the stable-
isotope data. In this calculation it is appropriate to
use Ty rather than the discharge temperature
(table 5, T,;) because the hot-spring waters cool
conductively from Ty to T4, without gaining volume
by mixing with nonthermal waters. The good agree-
ment between SO,-H,O and anhydrite-saturation
temperatures, low tritium levels in the hot-spring
waters (Mariner and others, 1993), and a strong
correlation between discharge rate and discharge
temperature (table 5) rule out substantial near-
surface mixing. The major sources of uncertainty in
the heat-transport calculation are @, and T,. The
uncertainty in @, has been estimated from repli-
cate measurements (table 5), and Tg may be £10°C.
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Hot-spring heat discharge is concentrated in the
northern part of the study area (fig. 11). The Aus-
tin system (about 88 MW) accounts for more than
half of the hot-spring heat transport in the study
area. With the possible exception of hot springs
that have developed on Mount St. Helens since the
1980 eruption (F.E. Goff, Los Alamos National
Laboratory, written commun., 1989), Austin Hot
Springs is the largest hot spring in the Cascade
Range (Mariner and others, 1990). The Kahneeta
Hot Springs system (about 27 MW) and the hot-
spring system(s) in the McKenzie River drainage
(about 24 MW) appear to transport roughly equal
amounts of heat; there is considerable uncertainty
in both of these heat-transport estimates due to
the uncertainty in the thermal-fluid discharge val-
ues (table 7). The total heat transported by hot-
spring systems in the McKenzie drainage, about 24
MW, was estimated to be 1.25 times the value ob-
tained from individual spring groups (table 5), on
the basis of diffuse input of thermal water into the
surface drainage. The Breitenbush Hot Springs
system (about 9 MW) transports an order of mag-
nitude less heat than the Austin system, and the
amount of heat transported by the Bagby Hot
Springs system is negligible.

Considering the probable uncertainty, the total
advective heat transport by hot-spring systems in
the study area is in the range of 125-170 MW. The
anhydrite-saturation temperatures listed in table 5
give a value of 148 MW (fig. 11); substituting SO,-
Hy0 isotope temperatures (Mariner and others,
1993) gives a similar value of 147 MW, These val-
ues are large enough to represent a significant
component of the regional heat budget, as dis-
cussed below in the “Heat Budget” section. For the
actual heat-budget analysis, we calculate hot-
spring heat discharge based on discharge tempera-
tures (table 5, T4) rather than geothermometer
temperatures (Ty), assuming that the heat loss
represented by the difference between Ty and T4
appears as conductive heat flow.

Advective heat transport by the hot-spring sys-
tems (about 148 MW) can be compared with the
heat released by magmatic extrusion. The Quater-
nary magmatic extrusion rate of 3-6 km3km arc
length/m.y. (Sherrod, 1986) represents an average
heat release of 60 to 120 MW in the study area,
assuming a basaltic magma with typical properties
(initial temperature 1,200°C, latent heat of crystal-
lization 420 J/g, specific heat 1.25 J/g/°C, and den-
sity 2.65 g/cm3; these values for a basaltic melt are
taken from Jaeger, 1964, and Harris and others,
1970). A more pertinent comparison would be with
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the heat provided by magmatic intrusion, but intru-
sion rates and subsolidus temperatures are unknown
and can be inferred only within broad limits. In the
“Heat Budget” section we derive a range of intrusion
rates (9-33 km3km arc length/m.y.) that is consis-
tent with a heat-budget analysis. There we invoke
magmatic intrusion to explain a thermal input of
160 MW to the Quaternary arc.

CONDUCTIVE HEAT FLOW

Active ground-water flow can cause substantial
variation in conductive heat flow with depth. Con-
ductive heat flow generally increases with depth in
ground-water recharge areas, where near-surface
temperature gradients are depressed, and de-
creases with depth in ground-water discharge
areas. It may increase, decrease, and even change
sign with depth in areas with substantial lateral
movement of ground water. This complicates the
interpretation of near-surface conductive heat-flow
data. (For a discussion of the thermal effects of
regional ground-water flow see L. Smith and
Chapman, 1983.)

Conductive heat-flow data indicate that the Qua-
ternary arc and adjacent 2- to 7-Ma volcanic rocks
constitute a large area of low-to-zero near-surface
conductive heat flow resulting from downward and
lateral flow of cold ground water. In contrast, near-
surface conductive heat flow is high (100 mW/m?
and greater) in rocks older than about 7 Ma ex-
posed at lower elevations in parts of the Western
Cascades. A similar pattern of low-to-zero conduc-
tive heat flow in permeable volcanic highlands and
relatively high heat flow in older, less permeable
rocks at lower elevations was observed by Mase
and others (1982) in the Cascade Range of northern
California. Mase and others (1982) concluded that
the surficial (less than about 300 m depth) thermal
regime of the California Cascades is dominated by
advective heat transfer, and that the conductive heat
flow from transition zones bounding the Cascade
Range is masked by hydrothermal circulation.

The conductive heat-flow data set for the study
area is presented in the appendix. We have aug-
mented the extensive published data set (Blackwell
and others, 1982a; Black and others, 1983; Steele
and others, 1982; Blackwell and Baker, 1988b;
Brown and others, 1980a) by logging open holes
and by analyzing data collected by the State of
Oregon and private companies that were previously
unpublished or published only as temperature-
depth profiles. Previously published heat-flow
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interpretations are included in the appendix for the
sake of comparison. All but four of the non-
isothermal temperature-depth profiles described in
the appendix were illustrated in Ingebritsen and
others (1988, figs. 1-210); the exceptions are shown
in figure 14. Table 8 shows the thermal-conductivity
data used to estimate thermal conductivity where
measurements from core or cuttings are lacking.

CONDUCTIVE HEAT-FLOW MAP

Conductive heat-flow data from the study area
are plotted on plate 2. The heat-flow contours indi-
cate estimated conductive heat flow at the depths
of conventional heat-flow measurements (100-200
m). Thus in some instances (sites 39, 40, 61, 80,
87) changes in gradient found at depths greater
than about 200 m were ignored (fig. 15). For ex-
ample, site 87 was assigned a high heat flow on
the basis of the high temperature gradient to about
205 m depth (appendix). The hydrologically con-
trolled gradient disturbances observed in most of
the deeper holes indicate that the actual crustal
heat flow may be much different from the pattern
defined by the shallow (less than about 200 m)
measurements.

The data in the appendix were used to estimate
values of a heat-flow surface at the nodal points of
a 5-km by 5-km grid. Heat-flow values at each
nodal point were estimated by calculating a con-
strained inverse-distance-squared weighted average
of the nearest data points in each of four quad-
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Ficure 14.—Temperature-depth profiles from heat-flow sites 13,
38a, 79a, and 85. See appendix for additional information
about these sites.
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rants. Heat flow was contoured from the gridded
values. In generating the grid, data from drill holes
identified as nearly isothermal or advectively dis-
turbed were omitted, as were data from a number
of shallow (generally less than 50 m deep) holes
that indicated very low heat flow (less than 25
mW/m2 west of the Cascade Range crest or less
than 40 mW/m? east of the Cascade Range crest).
Heat-flow sites 41 and 102 (appendix) were also
omitted.

The contours shown here are slightly revised
from those of Ingebritsen and others (1991), on the
basis of new information obtained in 1991-92.
Heat-flow estimates from sites 13 and 85 were
revised on the basis of new thermal-conductivity
data and sites 38a and 79a were added.

Figure 16 allows comparison of our conductive
heat-flow contours with those of Blackwell and
others (1990a). The contours shown east of the
Cascade Range crest are based on a limited
amount of low-quality data (appendix), and both
sets are highly speculative. West of the Cascade
Range crest, where more data are available, our
contours are generally similar to those of Blackwell
and others (1990a). There are two significant dif-
ferences: (1) we identify a heat-flow “trough” in the
western part of the Western Cascades and (2) we
close the 100 mW/m?2 contour against the Quater-
nary arc between hot-spring groups in the Western
Cascades (between Austin and Breitenbush hot
springs and between Breitenbush Hot Springs and
the McKenzie River group). The heat-flow trough is
suggested by data acquired by Ingebritsen and
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Ficure 15.—Temperature-depth profiles from relatively deep
drill holes (greater than 460 m depth) in study area. See ap-
pendix for additional information about these sites.
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HYDROTHERMAL SYSTEMS OF THE CASCADE RANGE, NORTH-CENTRAL OREGON

low-to-zero near-surface heat flow, there may be
local near-surface heat-flow highs due to lower per-
meability, favorable topographic configuration, and
(or) hydrothermal circulation. Site 87 (fig. 15, ap-
pendix) is an example of such a local hydrothermal
disturbance.

Our heat-flow map implies a stepwise transition
in passing from low-to-zero to moderate-to-high
near-surface conductive heat flow (pl. 2). Such a
sharp boundary is physically unrealistic, but the
available data do not define the actual geometry of
the transition. The numerical experiments de-
scribed in the section “Numerical Simulations”
illustrate a number of physically reasonable transi-
tions. Simulated transitions from near-zero values
to relatively high values generally occur over dis-
tances of a few kilometers. Several hypothetical
relations between fluid circulation patterns and
near-surface heat flow were shown by Blackwell
and others (1982a, fig. 10).

The thickness of the zone of low-to-zero conduc-
tive heat flow is poorly known and presumably
highly variable. It may generally range from 150 to
1,000 m in thickness. In the study area, only two
drill holes collared in Quaternary rocks are deep
enough to measure conductive heat flow beneath
the nearly isothermal zone (appendix, sites 40 and
80). The temperature log from heat-flow site 40 is
nearly isothermal to depths in excess of 200 m and
shows a linear conductive gradient below 650 m
depth; the temperature log from site 80 is nearly
isothermal to depths greater than 150 m and shows
a linear conductive gradient below 240 m depth
(fig. 15). Sites 40 and 80 are both in topographi-
cally low areas, and the nearly isothermal zone
may be substantially thicker beneath topographic
highs. Swanberg and others (1988) described two
core holes on the flanks of Newberry volcano that
are isothermal at mean annual air temperature to
depths of 900-1,000 m (see pl. 2 for the location of
Newberry volcano). The deepest water wells in the
2- to 7-Ma rocks of the High Lava Plains penetrate
to about 250 m depth (appendix) and are nearly
isothermal.

AREAS OF HIGH CONDUCTIVE HEAT FLOW

The heat-flow highs in the older rocks of the
Austin and Breitenbush Hot Springs areas and in
the McKenzie River drainage (pl. 2) are relatively
well documented. The heat-flow high shown north-
west of Kahneeta Hot Springs (pl. 2) is poorly
documented and is considered speculative. The
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density of conductive heat-flow data is greatest in
the Breitenbush area, where temperature profiles
(fig. 17) suggest that the high conductive heat flow
measured in rocks older than 7 Ma is a relatively
shallow phenomenon. Seventeen shallow drill holes
(less than 500 m deep) had high gradients that
generally correspond to heat flow greater than 110
mW/m2. However, a similar gradient in the upper
part of the deepest hole (appendix, site 61) changed
abruptly below a zone of thermal fluid circulation
at about 800 m depth. That such a change was
observed in the deepest hole suggests that the
gradients in the shallow holes are also controlled
by ground-water flow.

HEAT BUDGET

The role of advective heat transfer in mountain-
ous terrain is widely recognized, and the process
has been illustrated in numerical modeling studies
(for example, L. Smith and Chapman, 1983;
Forster, 1987). The data set from this study area
offers an opportunity to document the role of
advective heat transfer in a specific system. We
use a heat-budget approach to compare the heat
deficit in rocks younger than about 7 Ma with the
anomalous heat discharge in adjacent older rocks;
we then estimate the magmatic heat input required
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Ficure 17.—Temperature-depth profiles from drill holes col-
lared in rocks older than 7 Ma in Breitenbush Hot Springs
area (Black and others, 1983; Blackwell and Baker, 1988b;
Ingebritsen and others, 1988). Deepest hole (appendix, site
61) was completed to 2,457 m but was only logged to 1,715
m. Bottom-hole (2,457 m) temperature was at least 141°C
(Priest, 1985). The gradient measured over the 1,465-1,715-
m interval (81°C/km) projects to a bottom-hole temperature
of 152°C.
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to account for the total heat-flow anomaly. This
analysis (table 9) is specific to the section of the
volcanic arc between 44° and 45°15' N. The budget
area is bounded on the west by the 60-mW/m?2
heat-flow contour and on the east by the Deschutes
River (pl. 2); we assume that advective heat trans-
port across these boundaries is negligible. The bud-
get values (table 9) differ somewhat from those
presented by Ingebritsen and others (1989) because
the hot-spring discharge estimates (tables 5 and 7)
and conductive heat-flow map (pl. 2) upon which
they are based have been updated with new data.

The conductive components of the heat budget
(table 9) are defined relative to assumed back-
ground heat-flow values and are obtained by mea-
suring areas on plate 2 with a planimeter. In
general, heat flow in a given area is taken as the
average of adjacent contours (for example, 70 mW/m?2
between the 60-mW/m2 and 80-mW/m? contours).
We assign values of 140 mW/m? within the 120-
mW/m?2 contours and 60 mW/m2 outside the 80-
mW/m?2 contours east of the Quaternary arc.

Important assumptions in the heat budget are as
follows:

1. The background conductive heat flow beneath
the nearly isothermal zone in the Quaternary arc
is 100 mW/m2. This value is typical for areas of
Quaternary volcanism (for example, Hasabe and
others, 1970) and is consistent with the data from
two drill holes in the study area that are deep
enough to penetrate the nearly isothermal zone
(appendix, sites 40 and 80).

2. The background conductive heat flow in Ter-
tiary terrane is 60 mW/m2. Values greater than 60
mW/m? are the result of hydrologic sources.

3. The heat discharged by hot springs represents
the anomalous advective heat discharge from rocks
older than 7 Ma. This is a minimum value because
it does not include lower-temperature advective
discharge or allow for the possibility of yet-uniden-
tified thermal fluids.

Assumptions 2 and 8 require some additional ex-
planation. The global mean continental heat flow is
about 60 mW/m?2 (Jessop and others, 1976). The
mean heat flow for Tertiary tectonic provinces is
higher than 60 mW/m?2, with a large scatter. The
background heat flow for a given setting is deter-
mined by the competing effects of sinks (subducting
slabs in this case) and sources (for example, radio-
activity). One could as easily assume a background
value of 50 or 70 mW/m? in Tertiary terrane (J.H.
Sass, U.S. Geological Survey, written commun.,
1988). Thus (as beneath the Quaternary arc) the
appropriate background heat flow is subject to con-

GEOHYDROLOGY OF GEOTHERMAL SYSTEMS

siderable uncertainty. However, the results ob-
tained in this study are not particularly sensitive
to the exact value assumed. For example, a back-
ground value of 50 mW/m? in Tertiary terranes
west of the Quaternary arc would increase the con-
ductive anomaly from 127 (table 9) to 165 MW,
which would not affect the results.

The values for hot-spring heat output used in the
budget (assumption 3) are based on hot-spring
discharge rates (table 5) and on discharge tempera-
tures (T4), rather than the geothermometer tem-
peratures (Tg) used for figure 11. Two lines of
evidence suggest that the difference between Ty
and Ty is due to conductive cooling. First, there is
a strong positive correlation between hot-spring
discharge rates and discharge temperatures (table
5). This is an expected consequence of conductive
cooling of upflowing thermal waters in sub-boiling
systems, but would not be expected if cooling is due
to mixing with relatively cold ground water. Sec-
ond, tritium data (Mariner and others, 1993) indi-
cate that the thermal waters do not mix with
shallow, relatively tritium-rich ground water. Since
the difference between Ty and T4 results primarily
from conductive cooling, this increment of heat
presumably appears as part of the conductive
anomaly. In the Western Cascades, the thermal
power represented by the difference between Ty
and Ty (62 MW; compare the 121-MW value in fig.
11 and the 59-MW value in table 9) is equal to
about half of the conductive anomaly (127 MW).

The area of near-zero near-surface conductive
heat flow in this part of the Cascade Range (pl. 2)
generally coincides with the areal extent of perme-

‘able volcanic rocks younger than 7 Ma. On the ba-

sis of our assumptions regarding background heat
flow, about 470 MW of heat is swept out of these
younger rocks between latitudes 44° and 45°15' N.
by ground-water circulation. This amount is roughly
balanced by 314 MW of anomalous heat discharge
from rocks older than 7 Ma (table 9). Sufficient heat
is removed advectively from the rocks younger than 7
Ma to explain the anomalous heat discharge mea-
sured on the flanks of the Cascade Range.

The difference between the heat deficit in the
younger rocks and the anomaly in the older rocks
(~470 MW - 314 MW = ~156 MW) is an estimate of
lower-temperature advective discharge, which was
not determined directly. “Lower-temperature advec-
tive discharge” refers to heat discharged by springs
at temperatures within a few degrees of the local
mean annual air temperature. Such springs pre-
sumably occur both in the Quaternary arc and in
adjacent older rocks and may not be thermally or
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TaBLE 9.—Components of heat budget for Cascade Range volcanic arc between lat 44° and 45°15° N.

[MW, megawatts thermal]

Heat deficit represented by near-zero conductive heat discharge in <7-Ma rocks:

QUALETNATY ATC .eooveiernrierierieieiceeririecnerertesssteceessnnsessesnsessseessessesss
2- to 7-Ma rocks west of Quaternary arc...........cceevcerininirneenns
2- to 7-Ma rocks east of Quaternary arc .........ccceeevveeviccriennne

Anomalous heat discharge in >7-Ma rocks:

Conductive anomaly in the Western Cascades..........ccovuneeee
Heat discharged from hot springs in the Western Cascades?
Conductive anomaly in the Deschutes basin ........c..ccocvueeerecne
Heat discharged from hot springs in the Deschutes basin...

127 MW (62 MW from cooling of thermal waters)
59 MWb

111 MW (10 MW from cooling of thermal waters)
17 MW

314 MW

2In calculating the heat discharged by hot springs in the McKenzie River drainage, we assumed that the total thermal-fluid discharge is 1.25 times
that of the individual hot-spring groups, due to diffuse input of thermal water into the surface drainage. This approximate value is indicated by
measurements made at the U.S. Geological Survey streamflow-gaging station on the McKenzie River near Vida (table 7).

bBased on hot-spring discharge temperatures. The difference between the geothermometer and discharge temperatures (table 5) is due primarily to
conductive heat loss and, particularly in the Western Cascades, represents a significant fraction of the conductive anomaly.

chemically distinctive enough to be readily recog-
nized. This quantity can only be estimated as the
residual in the heat budget. The partitioning
between discharge in the younger and older rocks
is unknown.

Results presented in the section “Numerical
Simulations” show that low-temperature advective
heat discharge within the Quaternary arc is highly
dependent on the permeability structure, which is
poorly known. If only the Quaternary rocks are
permeable, low-temperature advective heat dis-
charge in the Quaternary arc will be significant. If
the deeper, older rocks are also permeable, most of
the background heat flow in the Quaternary arc
will be removed at deeper levels, and low-temperature
advective heat discharge within the arc itself will
be relatively small.

Only about one-third of the heat removed from
the younger rocks can be attributed to advective
heat transfer by the hot-spring systems (148 MW/
470 MW). The remainder must be removed by yet-
unidentified thermal fluids or by lower-temperature
ground water. In the context of our budget assump-
tions, conductive heat loss from such waters must
be invoked to explain the fractions of the conduc-
tive anomalies that cannot be attributed to conduc-
tive cooling of the hot-spring waters (table 9).

Because the anomalous heat discharge in the
older rocks (older than about 7 Ma) can be ex-
plained by advection from the younger rocks, we
need invoke magmatic heat input only to explain
an increment of about 40 mW/m2 (100 mW/m?2 - 60

mW/m?2) in the background conductive heat flow
beneath the Quaternary arc (an area of about 4,000
km?2). This requires an intrusion rate of 9 to 33
km3/km arc length/m.y., again assuming a basaltic
magma with an initial temperature of 1,200°C, a
latent heat of crystallization of 420 J/g, specific
heat of 1.25 J/g/°C, and a density of 2.65 g/cm3.
The lower intrusion rate assumes 900°C of mag-
matic cooling, whereas for the higher rate heat is
supplied by latent heat only, with no cooling. For
intermediate amounts of cooling, inferred intrusion
rates scale nonlinearly between these values. Be-
cause the magmatic extrusion rate has been 3 to 6
km3/km arc length/m.y. during the Quaternary
(Sherrod and Smith, 1990), our analysis suggests
an intrusion-to-extrusion ratio in the range of 1.5
to 11.

The intrusion rates calculated here are lower
than those of Blackwell and others (1990b), who
proposed an intrusion rate of about 55 km3/km arc
length/m.y. for central Oregon. This is partly be-
cause Blackwell and others (1990b) invoked a lower
outer-arc background heat flow, but most of the
discrepancy is due to their assumption that lateral
heat transfer by ground water is negligible.
Blackwell and others (1990a, b) argued that the
high heat-flow values observed in rocks older than
7 Ma can be extrapolated to midcrustal depths.

The assumption of a uniform heat flow of 100
mW/m?2 below the isothermal zone in the Quater-
nary arc is certainly an oversimplification. The
spatial distribution of anomalous heat discharge in
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the Western Cascades relative to Quaternary
dacitic and rhyolitic volcanoes (pl. 2) suggests that
lateral flow of heated ground water into the West-
ern Cascades may originate from heat sources
localized near Quaternary silicic magmatic centers,
as originally suggested by R.L. Smith and H.R.
Shaw in the early 1970’s. The areas of silicic volca-
nism are presumably areas with relatively high
intrusion rates, high intrusion-to-extrusion ratios,
and (by inference) relatively high background heat
flow (Hildreth, 1981). A larger average heat flow be-
neath the Quaternary arc (greater than 100 mW/m?2)
would reinforce our conclusion that sufficient heat
is removed advectively from the Quaternary arc to
support the heat-flow anomalies on its flanks.

The magnitude of lower-temperature advective
heat discharge is another, more important source
of uncertainty in the heat budget. If it is much
larger or smaller than the value estimated by dif-
ference (157 MW), one or more of our assumptions
must be in error. Results presented in the section
“Numerical Simulation” show that both the magni-
tude and the areal distribution of lower-temperature
advective heat discharge are highly dependent on
the permeability structure.

CONCEPTUAL MODELS

Two competing conceptual models of the thermal
structure of the north-central Oregon Cascades,
shown in figure 18, have significant implications
for magmatism and geothermal resource potential
in the Cascades. One model invokes a relatively
narrow, spatially variable deep heat-flow anomaly
that expands laterally at shallow depths because of
ground-water flow (fig. 18A). This “lateral-flow
model” is similar to two of the models for the West-
ern Cascade hot springs presented by Blackwell
and others (1982a, fig. 10, models 2 and 3), except
that we suggest significant spatial variability in
the heat source. An alternative model invokes an
extensive midcrustal heat source underlying both
the Quaternary arc and adjacent older rocks (fig.
18B) (Blackwell and others, 1982a; Blackwell and
Steele, 1983, 1985). As noted in the section “Con-
ductive Heat Flow,” the edge of such a heat source
would lie approximately beneath the 80-mW/m?2
heat-flow contour, which is as far as 30 km west of
the Quaternary arc (see fig. 16). More recently,
Blackwell and Steele (1987), Blackwell and Baker
(1988a, b) and Blackwell and others (1990a) have
suggested that the thermal effects of hydrothermal
circulation are locally superimposed on the effects
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of this extensive midcrustal heat source, which is
envisioned as a long-lived zone of magma interception,
storage, and crystallization with a time-averaged
temperature of about 600°C (Blackwell and others,
1990a, p. 19,514). Though the actual thermal struc-
ture is probably more complex than either of the
simple models shown in figure 18, the models pro-
vide useful end-members for discussion.

IMPLICATIONS OF REGIONAL GRAVITY, MAGNETIC, AND
ELECTRICAL GEOPHYSICAL DATA

Regional geophysical data afford a possible
means of discriminating between the alternative
models for the deep thermal structure (fig. 18). For
example, midcrustal, regional-scale geothermal
phemonema may be expressed in regional gravity
data, and we investigated this relationship in the
study area in some detail.

Blackwell and others (1982a) preferred their
model 1 (represented in our fig. 18B) because of
the “close correspondence of the heat flow and
{Bouguer] gravity anomalies” (Blackwell and others,
1982a, p. 8749; see also their fig. 8). Their
preferred model “relates the gravity and heat flow
data to a (large) zone of low-density (partially
molten) material in the upper part of the crust
(102 km) beneath the High Cascade Range and
extending about 10 km west of the High Cascade
Range boundary” (Blackwell and others, 1982a,
p. 8750).

When we plotted the relation between gravity
and heat-flow values from the study area (fig. 19),
for every heat-flow datum we interpolated a corre-
sponding gravity value from a gridded representa-
tion of regional gravity. This approach allows us to
examine the nature and strength of any correlation
between gravity and heat flow in this area, but it
is limited by the nonuniform distribution of heat-
flow data.

West of the Cascade Range crest there is a weak
negative correlation between Bouguer gravity and
heat flow, with a “step” change in Bouguer gravity
values associated with a heat flow of approximately
60 mW/m? (fig. 194). However, on a regional basis
there is no correlation between wavelength-filtered
residual gravity and heat flow (fig. 19B) or between
isostatic residual gravity and heat flow (fig. 19C).
Locally, a persistent negative correlation between
gravity and heat flow in the vicinity of Mount Hood
(figs. 19A-~C) can be at least partly explained as a
relict of strong correlations between elevation and
heat flow and between elevation and gravity.
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sive test because the lateral-flow model predicts
reduced heat flow below zones of active fluid circu-
lation, whereas the midcrustal heat source model
predicts no change in heat flow with depth. The
temperature profile from heat-flow site 61 (fig. 17)
does show reduced heat flow below a zone of
thermal-fluid circulation. However, the background
heat flow beneath this thermal aquifer remains un-
certain. As discussed further in the next section,
the temperature profile can be interpreted in terms
of either a long-lived (about 105 years) hydrothermal
system and a relatively low (about 60-70 mW/m?2)
background heat flow, or a shorter-lived (about 104
years) hydrothermal system superimposed on a
relatively high (greater than 100 mW/m2) back-
ground heat flow. The first interpretation is consis-
tent with the lateral-flow model, the second with
the midcrustal heat source model.

A much less expensive (and less conclusive) test
of the alternative models would be to drill several
shallow (150 m) heat-flow holes in the older rocks
in areas where heating due to regional ground-
water flow seems unlikely (Ingebritsen and others,
1993). The current heat-flow data set (appendix) is
heavily biased toward hot-spring areas and other
topographic lows that represent probable ground-
water discharge areas.

NUMERICAL SIMULATIONS

Numerical simulation can be used to examine
some of the thermal and hydrologic implications of
the alternative conceptual models depicted in fig-
ure 18. We simulated ground-water flow and heat
transport through two generalized geologic cross
sections west of the Cascade Range crest: one in
the Breitenbush area, where there is no evidence
for major arc-parallel down-to-the-east faulting,
and one in the McKenzie River drainage, where
major graben-bounding faults exist (see fig. 3 for
fault locations). The simulation results provide
some constraints on the regional permeability
structure and also show that either model for the
deep thermal structure can satisfy the near-surface
heat-flow observations.

The numerical code used for the simulations, PT
(Bodvarsson, 1982), employs an integrated-finite-
difference method to solve coupled equations of
heat and energy transport:

I —"’—t @p) AV = -[, pvgm dA + [, GraV
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and

Jy 2 (ppe) AV =
t
J,AVT ndA -, pcSTvyndA + | G, dV
A A d v Yh

respectively, where ¢ is time, ¢ is effective porosity,
p and p_ are density of the fluid and the medium,
respectively, V is volume, v4 is volumetric flow
rate (Darcy velocity), n is a unit vector normal to
an interface, A is area, e is internal energy of the
medium, A is medium thermal conductivity, T is
temperature and 8T denotes a volume-interface
temperature, c¢; is the heat capacity of the fluid,
and G; and G; are mass and heat source/sink
terms, respectively. The volumetric flow rate (vg4) is
calculated using Darcy’s Law. The mass and energy
balance equations are coupled through pressure-
and temperature-dependent parameters, as well as
the source and sink terms.

The land surface defines the upper boundary of
each cross section. We assumed that the water
table is coincident with the land surface. This may
be a poor approximation in some mountainous
areas (see Forster and Smith, 1988), but in our
particular cases the presence of abundant peren-
nial streams and springs, generally shallow static
water levels in wells (appendix), and high rates of
ground-water recharge (table 3) combine to suggest
a relatively shallow water table. Simulated land-
surface temperatures (12.8°C-5.5°C per km above
sea level) were derived from the observed relation
between spring temperature and elevation (fig. 21).
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Ficure 21.—Relation between spring temperature and elevation.
Line is linear-least-squares fit to data.
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For each cross section we present selected steady-
state results that were obtained through long-term
transient simulations. Initial conditions were a
hydrostatic pressure distribution and temperature
gradients of 50°C/km in the Quaternary arc and
30°C/km in the Western Cascades. The systems
approached a steady state over simulation times of
10° years or more. At simulation times of 10°
years, maximum rates of temperature change were
typically less than 0.5°C/1,000 yr. At simulation
times of 10% years, rates of temperature change
were less than 0.02°C/1,000 yr.

The lithologic units used in the numerical simu-
lations are somewhat different from those of
Sherrod and Smith (1989; see our table 1) because
the geology of the cross sections is based in part on
detailed mapping by Priest and others (1987,
1988). Table 10 describes lithologic units and the
values of permeability, porosity, and thermal con-
ductivity assigned to those units. The values of
porosity and thermal conductivity shown in table 10
were used for all of the simulations, but
permeabilities were varied about the listed values.
Porosity is assumed to be inversely correlated with
the age of the rock, and thermal-conductivity
values are based on the data of table 8.

PERMEABILITY STRUCTURE

Few permeability data are available for the
study area, but two lines of evidence indicate that
the older rocks are generally less permeable than
the younger rocks. First, the ground-water
recharge estimates discussed in the section “Hydro-
logic Setting” show an inverse correlation between
recharge rates and bedrock age. Second, as dis-
cussed in the section “Conductive Heat Flow,” most
100- to 200-m-deep wells in rocks younger than
about 7 Ma show pervasive advective disturbance,
whereas wells of that depth in older rocks have
dominantly conductive temperature profiles. We
can assume on this basis that the bulk permeabil-
ity of the older rocks is relatively low, but the
existence of hot springs and of localized advective
disturbances (for example, fig. 17) in the older
rocks are direct evidence for discrete zones of high
permeability.

The older rocks have lost primary permeability
through hydrothermal alteration. Alteration of vol-
canic glass to clays and zeolites severely reduces
permeability, as does recrystallization of glass to
higher-temperature minerals. The extent of alter-
ation depends largely on the primary permeability,
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glass content, and time-temperature history of the
rock. We can correlate loss of permeability with
age because, in the study area, rocks of a given age
are lithologically similar and share similar time-
temperature histories. The abundance of ash-rich
sequences such as the Breitenbush Tuff in the 17-
to 25-Ma age interval is an example of lithology
influencing alteration patterns on a regional scale.

Keith (1988) noted that tuffaceous volcanic rocks
affected by high-temperature (greater than 200°C)
alteration consist mostly of anhydrous minerals
and are more easily fractured than rocks affected
by lower-temperature alteration, so that secondary
permeability may be relatively high. She suggested
that a thermal aquifer in rocks affected by high-
temperature alteration might consist of intercon-
nected fractures at the same general stratigraphic
horizon.

The simulations described herein allow us to
place some limits on regional-scale permeabilities.
Bulk permeabilities greater than about 10717 m? in
the oldest rocks (table 10, unit Tvg) allow wide-
spread advective heat transport; this is inconsis-
tent with the heat-flow data, which suggest that
significant advective transport in these rocks is
only very localized. Permeabilities less than about
1014 m? in the youngest rocks (unit QTv) lead to
near-surface conductive heat-flow values that are
consistently higher than observed values from these
rocks. For the intermediate-age units we assumed an
inverse correlation between permeability and age.

A pronounced permeability-depth relation within
each unit can also be inferred from the results of
our simulations. Although the range of permeabil-
ity values shown in table 10 allows us to match the
conductive heat-flow observations, higher near-
surface permeabilities are required to match the
ground-water recharge estimates. Well-test data
from shallow (less than 50 m) domestic wells in the
Western Cascades also indicate relatively high
permeabilities, in the range of 10°14 to 10-12 m2
(McFarland, 1982).

BREITENBUSH SECTION

The 22-km-long Breitenbush cross section ex-
tends west-northwest from the Cascade Range
crest through Breitenbush Hot Springs (figs. 22
and 23). There are several dacite and rhyolite
domes of 0.25 to 0.7 Ma age in the eastern part of
the section (fig. 22), and the underlying silicic
magmatic system is a possible heat source for the
hydrothermal system (R.L. Smith and Shaw, 1975).
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failed to reproduce either the low near-surface
conductive heat flow in the Quaternary arc or the
elevated heat flow between Breitenbush Hot
Springs and the Quaternary arc; some permeability
is required. A simulation using a narrow heat-flow
anomaly and incorporating the permeability values
listed in table 10 (fig. 24D) provided a better match
to the observed heat-flow values, although simu-
lated heat-flow values between Breitenbush Hot
Springs and the Quaternary arc are still mostly
below the range of observed values.

In the simulation summarized in figure 24D,
most of the ground water recharged in the Quater-
nary arc (303 kg/s) discharges locally in topo-
graphic lows (301 kg/s), but carries little heat.
Simulated discharge in the Breitenbush Hot
Springs area (about 1 kg/s) is a small fraction of
total recharge in the Quaternary arc, but this
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relatively small mass flux transports substantial
amounts of heat from the Quaternary arc to the
Western Cascades. In this particular simulation
the ratio of hot-spring discharge to recharge in the
Quaternary arc (0.003) is similar to the ratio
(0.002) that we estimated from measured ground-
water recharge (table 3) and hot-spring discharge
rates (table 5).

The simulated results are highly sensitive to per-
meability (figs. 25 and 26). Isotropic permeabilities
one-tenth of those listed in table 10 (fig. 25A) lead
to near-surface heat-flow values in the Western
Cascades that are not significantly different from
the conduction-only case of figure 24B. Increasing
permeability tenfold (fig. 25B) provides a better
match to the ground-water recharge estimates, but
decreases heat flow between Breitenbush Hot
Springs and the Quaternary arc markedly, to
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FicurRe 23.—Generalized lithologic section used for numerical simulation of Breitenbush Hot Springs
system. Lithologic units, which are lava flows or other volcanic and volcaniclastic strata, are
described in table 10. Heat-flow sites 40 and 61, which lie off section (fig. 22), are projected onto
section in two different ways to indicate possible range of appropriate geologic and topographic
contexts. Geologic projection (G) locates drill hole correctly relative to stratigraphic contacts, and
topographic projection (T) puts collar elevation at land surface.
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values well below those observed. Figures 25C and
25D illustrate the effects of moderate hydraulic
anisotropy within each lithologic unit. In the simu-

lation summarized in figure 25C, horizontal
permeabilities (k,) are those listed in table 10,
whereas vertical permeabilities (ky) are reduced by
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FiGURE 24.—Selected steady-state results from numerical simulation of Breitenbush section. Conduction-only
case of (A) was used to correct simulated near-surface conductive heat flows from other simulations. In
B, C, and D simulated heat-flow values are compared with measured values and, in D, simulated hydro-
logic recharge and discharge rates are compared with minimum recharge rates (unit baseflow) that
were estimated for rocks of similar ages (table 3). Labeled arrows indicate how heat supplied to system
is partitioned. For example, in D basal heat flow beneath Quaternary arc totals 7.50 x 105 J/s. Of this
quantity, 5.76 x 105 J/s flows laterally into Western Cascades and 1.74 x 105 J/s flows across land
surface within Quaternary arc. Line of section shown in figure 22; lithologic units described in table 10.
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a factor of 10. In figure 25D, k_ is 10 times higher | layering of volcanic units; enhanced vertical perme-
than the k_ values listed in %’able 10. Enhanced | ability might be explained by pervasive vertical

x

horizontal permeability might be explained by the | fractures. Evidence from New Zealand geothermal
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Ficure 25.—Selected steady-state results from numerical simulation of Breitenbush section, showing sensitivity
to permeability. Line of section shown in figure 22; lithologic units described in table 10.
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fields in volcanic rocks suggests that kx/ky is
approximately 10 (P.R.L. Browne, oral commun.,
1990), the case represented in figure 25C.

The heat-flow observations are best matched
with the permeability values of table 10 (fig. 24D).
However, for the full range of permeability values
illustrated (figs. 24D and 25), simulated hydrologic
fluxes at the land surface are generally less than
the minimum ground-water recharge calculated for
rocks of similar ages (table 3). Permeabilities
higher than those of figure 25B would be required
to match the recharge estimates and would clearly
cause excessive cooling. To match both the heat-
flow observations and the recharge estimates would
require a strong permeability-to-depth relation
within each unit, with near-surface (less than
about 50 m) permeabilities significantly higher
than those used in our simulations. As noted
above, well-test data from domestic wells in the
Western Cascades (McFarland, 1982), support the
inference of much higher permeabilities at rela-
tively shallow depths.

The limited sensitivity analysis discussed above
provides some constraints on the regional perme-
ability structure but does not constrain the perme-
ability of the thermal aquifer (unit Tvsyq), which
was treated as a 30-m-thick zone of relatively high
permeability. Figure 26 shows some effects of
varying the permeability of the thermal aquifer
independently within the overall permeability
structures of figures 24D (table 10: £ = 1.0x), 25A
(¢ = 0.1x) and 25B (k = 10x). The results are sum-
marized in terms of flow rates and temperatures in
the thermal aquifer at the edge of the Quaternary
arc. If the other units are assigned permeability
values from table 10 (¢ = 1.0x), assigning per-
meabilities less than about 1014 m2 to the thermal
aquifer restricts the volumetric flow rate and thus
limits advective heat transfer. Assigning per-
meabilities greater than about 10714 m2 to the
thermal aquifer leads to significant cooling and
thus reduces conductive heat flow between
Breitenbush Hot Springs and the Quaternary arc.
Permeabilities on the order of 10~14 m2 seem to be
required for lithologic unit Tvsq to function as an
effective thermal aquifer, given its assumed thick-
ness and the constraints on the permeabilities of
other units.

Although the simulation involving a narrow
basal heat-flow anomaly and the permeability val-
ues listed in table 10 reproduced the near-surface
heat-flow values reasonably well, the temperature-
depth profiles from the deep drill holes at heat-flow
sites 40 and 61 were matched poorly; simulated
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temperatures and temperature gradients were gen-
erally less than the measured values (fig. 274). A
conduction-dominated simulation with a wide heat
source and fluid flow confined to rocks younger
than about 2.3 Ma (table 10, unit QTv) matched
the data from site 40 fairly well, but failed to
reproduce the high heat flow between Breitenbush
Hot Springs and the Quaternary arc or the
elevated gradient measured to depths of about 800
m at site 61 (fig. 27B). When fluid flow is confined
to unit QTv, most of the heat supplied to the
Quaternary arc discharges advectively there.
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FiGURE 26.—Relation between permeability of ther-
mal aquifer (lithologic unit Tvaq [see table 10D
and temperature and volumetric flow rate (Darcy
velocity) in thermal aquifer at edge of Quater-
nary arc. Overall permeability structures (k) are
those of figures 24D (k = 1.0x), 25A (& = 0.1x),
and 25B (k = 10x).
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Both the near-surface heat-flow data and the
temperature-depth profiles from sites 40 and 61
can be reproduced reasonably well using two very
different deep thermal structures, again using the
permeability values listed in table 10 (fig. 28). The
simulation summarized in figure 28A involved uni-
form basal heat flow of 60 mW/m2 and an intense
local heat source beneath the Quaternary arc, a
situation analogous to the lateral-flow model (fig.

A. ADVECTIVE MODEL
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18A); the simulation in figure 28B involved a wide
basal heat-flow anomaly of 130 mW/m?2 , analogous
to the midcrustal heat source (fig. 18B). The local
heat source in figure 28A represents the thermal
input of an upper-crustal magma body. The total
heat supplied to the system in these two simula-
tions (fig. 18) is identical. Both simulations match
the observations reasonably well, and the rates of
advective heat transfer from the Quaternary arc to
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the Western Cascades (0.7-1.2 MW) are similar to the
length-normalized rate of heat transfer by the hot-
spring systems (121 MW + 135 km arc length = 0.9
MW/km arc length; see fig. 11 for measured values).
Our simulations cannot simultaneously match
the temperature profile from site 61 and the near-
surface heat-flow data. If the simulated tempera-
ture at the depth of the thermal aquifer (about 800
m) matched the measured temperature exactly,

GEOHYDROLOGY OF GEOTHERMAL SYSTEMS

Breitenbush Hot Springs and the Quaternary arc
would greatly exceed the observed values (see, for
example, figure 28, where simulated heat flows are
higher than most observed values despite thermal-
aquifer temperatures that are lower than those
observed). This implies that the actual fluid-flow
geometry is probably more complex than in the
system we simulated. For example, the geometry of
unit Tvyq (the quartz-bearing ash-flow tuff) may be

near-surface conductive heat flow between
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(unsimulated) dimension may be important. Three-
dimensional effects are certainly responsible for
some of the scatter in the observed heat-flow data
that are projected to the section, and the nonuni-
form distribution of hot-spring heat transport (fig.
11) indicates significant three-dimensional focusing
of fluid flow.

Different ways of matching the temperature pro-
file from heat-flow site 61 carry distinct implica-
tions about the age of the hydrothermal system.
Under near-steady-state conditions (time scales
greater than about 10% years), the low temperature
gradient below 800 m depth is best matched with a
relatively low basal heat flow. As noted in figure
17, the temperature gradient measured across the
1,465- to 1,715-m interval is 31°C/km and predicts
a bottom-hole (2,457 m) temperature of 152°C,
which is consistent with the measured bottom-hole
temperature of at least 141°C (Priest, 1985). This
gradient corresponds to a heat flow of about 68
mW/m?2 (appendix). If flow in the thermal aquifer
has been relatively short-lived (about 10% years),
the observed profile can be matched well with a
much higher basal heat flow. For example,
Blackwell and Baker (1988a; Blackwell and others,
1990a) used a heat flow of 124 mW/m?2 and a time
of 2.5 x 10 years to obtain a good match. If the
hydrothermal system is driven by a long-lived
silicic magmatic system such as fed the 0.25- to
0.7-Ma dacite domes in the eastern part of the
cross section, the near-steady-state match is more
appropriate. In either case, volumetric flow rates
(Darcy velocities) on the order of 1 m per year are
required to maintain elevated aquifer temperatures.

In conclusion, regardless of the conceptual model
invoked for the deep thermal structure, significant
advective heat transport is required to reproduce
several of the observations from the Breitenbush
area, including the near-zero near-surface heat
flow in the Quaternary arc, elevated heat flow
between Breitenbush Hot Springs and the Quater-
nary arc, and the major decrease in the tempera-
ture gradient below 800 m depth at heat-flow site
61. Because of the strong advective effects, the
deep thermal structure cannot be uniquely inferred
from the available temperature-depth observations.

MCKENZIE RIVER SECTION

The 44-km-long McKenzie River cross section ex-
tends west from the Cascade Range crest through
Terwilliger Hot Spring (fig. 29). Silicic volcanic
rocks exposed near the eastern end of the section
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in the South Sister area (fig. 29) include Pleis-
tocene and Holocene rhyolite and dacite (Taylor
and others, 1987); thus the underlying silicic mag-
matic systems may drive hydrothermal activity.

Temperature-depth data are sparser in the
McKenzie River area than in the Breitenbush area,
and deep (greater than 1 km) drill-hole data are
lacking. In the Breitenbush area, there is evidence
for a zone of relatively high permeability at the
approximate stratigraphic position of unit Tvsq, as
summarized above. In the McKenzie River cross
section we have experimented with simulation of
analogous 30-m-thick stratigraphically controlled
aquifers at three different depths (fig. 30), al-
though there is no direct evidence for such aqui-
fers. The hypothetical dikes shown on the cross
section (fig. 30) underlie silicic vents near South
Sister; zones of relatively high vertical permeabil-
ity associated with such dikes could enhance deep
recharge in the Quaternary arc.

The hot springs in the McKenzie River drainage
lie near two major down-to-the-east normal fault
zones, the Horse Creek fault zone and the Cougar
Reservoir fault zone (figs. 3 and 29). Relatively
chloride-rich waters sampled at several other
localities suggest a “leaky” thermal system in the
area. Dilute Na-Cl water from a 62-m-deep well at
White Branch Youth Camp (table 4, analysis 30)
could contain approximately 5 percent thermal
water, and the Bigelow thermal well (table 2) dis-
charges thermal water compositionally similar to
that from Belknap Springs (see fig. 29 for well
locations). The unnamed spring between Foley
Springs and White Branch Youth Camp (fig. 29) is
anomalously high in chloride (table 4, analysis 29),
as are Separation Creek (table 7) and the White
Branch of McKenzie River (Ingebritsen and others,
1988). The anomalous chloride flux in Separation
Creek (about 10 g/s) is larger than the fluxes from
some of the hot springs in the study area (table 5).
This widespread evidence for diffuse discharge of
thermal water is consistent with data from the
U.S. Geological Survey stream-gaging station near
Vida (table 7), which suggest that the total dis-
charge of high-chloride water in the McKenzie
drainage is somewhat greater than the sum of the
individual hot springs.

Pressure and temperature solutions for the
McKenzie River section were calculated at 921
nodal points within a 5.5- to 7.5-km-deep inte-
grated-finite-difference grid (fig. 30). The boundary
conditions were the same as those used in simula-
tions of the Breitenbush section: the lateral bound-
aries were no-flow boundaries, the lower boundary
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a controlled-flux boundary, and the upper boundary
a constant pressure-temperature boundary. We
again simulated the thermal input for the alterna-
tive thermal structures (fig. 18) by varying the
distribution of deep heat sources. Except where
otherwise noted, lithologic units and rock proper-
ties are those listed in table 10.

We treated the faults (fig. 30) as 30-m-wide
zones of relatively high permeability. The presence
of several fault zones and the major topographic
divide between Horse Creek and Cougar Reservoir
make the McKenzie River section significantly dif-
ferent from the Breitenbush section; the degree of
continuity of regional ground-water flow across
these barriers is one of the major issues of interest.

In selected results from numerical simulation of
the McKenzie River section (figs. 31-33), simulated
near-surface heat-flow values are compared with
data projected onto the line of section, and volu-
metric flow rates (Darcy velocities) in the hypo-
thetical aquifer units are shown for some cases.
Results from a conduction-only simulation with
uniform basal heat flow (fig. 814) were used to

122°20' 122°10'
T
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correct for topographic distortion of simulated heat-
flow values.

As was the case with the Breitenbush section,
conduction-only simulations with narrow (fig. 31B)
or wider (fig. 31C) basal heat-flow anomalies failed
to reproduce the near-surface heat-flow observa-
tions. However, the heat-flow data are concen-
trated near the Horse Creek and Cougar Reservoir
fault zones (fig. 29). The elevated heat flow in
those areas (fig. 31) could be explained in terms of
convective (density-driven) circulation within the
fault zones themselves, with insignificant advective
heat transport in the two dimensions that we simu-
lated, although such relatively local circulation
would be inconsistent with some of the geochemical
evidence discussed in the section “Thermal Waters.”

Figure 31D summarizes the results of three
simulations in which aquifer depth was varied. The
30-m-wide fault zones and the aquifer were
assigned permeabilities of 2.5 x 10714 m2. These
simulations resulted in pronounced conductive
heat-flow anomalies at the Horse Creek and Cou-
gar Reservoir fault zones and in the Separation

121°60'
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Wolf Meadow *
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Gaging
station
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Hot Spring
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Ficure 29.—McKenzie River area showing line of section used in numerical simulations (figs. 30-33), locations
of thermal springs and other springs and wells discussed in text, faults, and Quaternary volcanic rocks.
Geologic data are from Priest and others (1988) and from authors’ unpublished compilation map.
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Creek area but resulted in very low heat flow
between the two fault zones. In each of these simu-
lations, advective heat transfer between the Qua-
ternary arc and the Western Cascades is small,
amounting to less than 10 percent of the heat sup-
plied to the Quaternary arc; most of the heat sup-
plied to the Quaternary arc discharges in the
Separation Creek area or at the Horse Creek fault
zone. Only for the deepest aquifer configuration is
there continuous regional ground-water flow and a
net transfer of heat from the Quaternary arc to the
Western Cascades (see the volumetric flow rates
and labeled arrows in fig. 31D). For the shallower
aquifer configurations there is actually net heat
transfer from the Western Cascades to the Quater-
nary arc, because some ground water recharged in
the Western Cascades discharges in the Horse

Creek area.
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Simulated heat transfer between the Quaternary
arc and the Western Cascades is sensitive to the
permeability structure. Net heat transfer is
increased by reducing the permeability of the
upper (dashed) part of the Horse Creek fault zone
to values similar to those assigned to the rocks sur-
rounding the fault zone (fig. 324); incorporating
30-m-wide high-permeability (2.5 x 10714) conduits
(dikes, fig. 30) for deep recharge within the Quater-
nary arc (fig. 32B); and lowering the permeability
of the 8 to 17-Ma lava flows (table 10, Tvz) to 2 x
1017 m? (fig. 32C). If these relatively minor modi-
fications to the poorly constrained permeability
structure are combined (fig. 32D), the net heat
transfer is significant, and near-surface conductive
heat flow between the Horse Creek and Cougar
Reservoir fault zones is greater than the basal heat
flow.
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Reduced permeability in the upper part of the | equal (for example, fig. 31D), discharge of heated
Horse Creek fault zone (fig. 32A) might be ex- | ground water is concentrated at Horse Creek, with
plained by hydrothermal alteration and (or) silica | relatively minor hydrothermal effects at Cougar
deposition. Note that if the permeabilities of the | Reservoir. Over time, focused discharge at Horse
Horse Creek and Cougar Reservoir fault zones are | Creek could lead to decreased permeability. Silica

. B. CONDUCTION ONLY: NARROW DEEP
- A. (_Z’ONDUCTION ONLY: TOPOGRAPHIC EFFECTS ~  HEAT-FLOW ANOMALY _
QEE o Simulated (uncorrected) o Observed
w3 %‘ 200 - B — Simulated (corrected) 7
g3 w L © 0000 Basal heat flow i L ° ° ]
E3< 100 9 S o [
? Z_g © o° o0 © 9% o3 L o ) 00 R
L r oo © o b o Basal heat flow h
é ,,9{ ¥ o9 . ] . | . | L L : ] . g L 1 L I ) ! . ]
|-‘— Western Cascades —>|<-—Quaternary arc —»’ |<— Western Cascades ——|<— Quaternary arc —»l
i< o o -
meters_, & ge 5, O R 1 -1 2. O
S SR &S 8¢ § S ER &3 8§ r
FEDEE W o8 § P20 53 P
2,000 1 S § §,§ 1 8= 14 15 & § §,§ 8= g -
LN 22 5 N E.3 -
Sea _| I -
level > v,
i Y3 023 T M ] i
] v2
-2,000 - R e -
~=&—5.,50 Heat flow, in |oules \
E per second x 10° L N
—300= Line of equal temperature, l / y /
-4,000 in degraes Celsius 150 122.30 . 112 83 400 T21 60 |
21'.394 /—.— L . | . ! L 1 s ! " ' / 1 s )
0 8 16 24 32 40 0 8 16 24 32 40
D. ADVECTIVE MODEL: HYPOTHETICAL AQUIFER
o AT THREE DIFFERENT DEPTHS
2 £Z 61 -
og8
[T
=1
20,4
Tane 2
L_.l Z0 5
2qe”
3 = E 0
C. CONDUCTION ONLY: WIDER DEEP HEAT Q =3
o,  FLOWANOMALY 2 -
SE = ~— Simulated (corrected) .
T<w 200 © Observed _ Simulated _|
) 25 ) o {corrected)
< 3 E B o T 7
i o
€25 100 2
BE3 T fo—v
3 T o Basal heat flow ] T o b
u g W 1 1 1 1 L 1 1 1 ) ] i 1 )
!«—— Western Cascades —>|<— Quaternary arc —»’ |<— Western Cascades —»}4— Quaternary arc —»’
25 N N2 B ~
METERS_,. &8 - o] ) §¢, . S
18 é"a%g e & oS §~;°§_ 5 8g § 2318 28
§FeEl Tv (=TS §Eaacs S8
20018 8555 M 9T % 1§85 88 g I
13 2 L2\ 8 g2 § I
Sea L -
level
-2,000 0.24 L JOUATN D) L
| TV3 :
19.16 00/22.3;_ 2
-4,000 - /T/,__.__ _3 1 - : 1 0213 ————;—-—fztso a
s 1 L 1 L ] ) 1 N 1 L 1 1 1 .5<“ hid 0-84 L 1 V3 n 1
0 8 16 24 32 40 0 8 16 24 32 40

DISTANCE, IN KILOMETERS

Ficure 31.—Selected steady-state results from numerical simulation of McKenzie River section. Simulated
heat-flow values are compared with measured values and, in D, simulated volumetric flow rates (Darcy
velocities) in deep “aquifer” unit are shown. Labeled arrows indicate how heat supplied to the system is
partitioned. In D, the solid, dashed, and dotted lines and arrows indicate results for shallowest, inter-

mediate, and deepest aquifer configurations, respectively. Line of section shown in figure 29; lithologic
units described in table 10.
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deposition might be concentrated in the upper part
of the fault zone, where temperature gradients are
relatively steep.

As with the Breitenbush section, very different
distributions of deep heat sources can produce simi-
lar matches to the available data. However, unlike
the Breitenbush case, one of the matches that we
consider reasonable for the McKenzie River section
is conduction-dominated. A conduction-dominated
simulation with a wide basal heat-flow anomaly and
fluid flow confined to unit QTv (fig. 334) is analo-
gous to the midcrustal heat source model (fig. 18B)
and provides a reasonable match to the available
data; elevated heat flow near the Horse Creek and
Cougar Reservoir fault zones can be explained in
terms of circulation in a third (unsimulated) dimen-
sion, as noted above. Simulations involving local-
ized heat sources, which are analogous to the
lateral-flow model (fig. 18A4), can also match the
thermal data (for example, fig. 33B); they involve
advective heat-transfer rates (0.9-1.8 MW) that are

A. FLUID FLOW IN QTv ONLY, WITH A WIDER,
MORE INTENSE DEEP HEAT FLOW ANOMALY

METERS PER

VOLUMETRIC FLOW
RATE IN AQUIFER
SECOND (x 10'8)
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roughly comparable to the measured rates of heat trans-
fer by hot-spring systems (0.9 MW/km arc length).

In conclusion, the shallow, sparser thermal
observations in the McKenzie River area allow con-
duction- or advection-dominated numerical simula-
tions. Advection-dominated models lead to elevated
heat flow in the highlands between the Horse Creek
and Cougar Reservoir fault zones only if there is a
thermal aquifer at depths of several kilometers. At
shallower depths, regional ground-water flow may
be interrupted by the Horse Creek fault zone and
the topographic divide between the fault zones.
Blackwell and others (1990a, p. 19,484) argued
against the lateral-flow model (fig. 18A) on the basis
of a high conductive gradient measured in the “Wolf
Meadow hole,” which is located north of the
McKenzie River in a topographic position analogous
to the highlands between Horse Creek and Cougar
Reservoir (fig. 29). Our results show that regional
ground-water flow could influence heat flow at such
locations and explain the observed gradient.

B. ADVECTIVE MODEL (FIGURE 32D), WITH LOCALIZED
HEAT SOURCES AND HYPOTHETICAL AQUIFER AT TWO
DIFFERENT DEPTHS

6 ! .
o | Deep 7
2
0

Shatiow

1 1 1 1
=0 "
SEE _ r
T3S 200 Basal — Simulated {corrected) -
g3 E B o heatflow [} o Observed | i
wsx — N
=g ) >
> 100 - j’ ° -1 o -
3. g 8 5] \/ \ J L/\‘ o) hallo
<z F o 4 s
§9 @ 0 s 1 L 1 ) I . f L 1 1 ) 1 1 |\/ 1 Ul \ L 1
[
We_stern Cescades-—»l-«— Quaternary arc —>| We_stern Cascades ——-—>'<———Quaternary arc —-I
METERS_ . 58 2e S Y3 g O 09 _
s £ %,3 L 21.50 TS S8 éé g2 = 2439 20
2000—5 £S5 &5 Tvy A L ¥ £5 5% oS § 190 L
TS SE 82 EZ 2 &% 38 g3 &
_ 8 I 3 (5}" L 8 T 3 L
Sea _| e _| -
level w - Tvy
Ty ——— | Lo -~
2,000 0.10 T M
g Tvy ___/;_’ﬁ——_ o T T TS
| eat flow, in joule: ——— Shallow
4000 300/ 580 her second [x 105? ~ == Deep -
It —300— Line of equa! temperature, «+-+*+ Both — = ¢
YA T” n 2’.-”1. ., ndegeesCelsus , , , '28| J8%
0 8 16 24 32 40 0 8 16 24 32 40

DISTANCE, IN KILOMETERS

FIGURE 33.—Selected results from numerical simulation of McKenzie River section, showing that sparse near-
surface heat-flow observations can be matched using (A) conduction-dominated model involving fluid
flow only in unit QTv or (B) advection-dominated model with localized heat sources. Solid and dashed
lines and arrow in B indicate results for shallower and deeper aquifer configurations, respectively; the
dotted lines and arrow indicate results from simulation in which both aquifers were present. Labeled
dark rectangles in B indicate localized heat sources each producing 12.5 x 105 J/s; permeability struc-
ture is that of figure 32D. Line of section shown in figure 29; lithologic units described in table 10.
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HEAT TRANSFER RATES AND RESIDENCE TIMES

Actual patterns of fluid circulation are certainly
more complex than the representations in our two-
dimensional sections. For example, topographic
variations in the unsimulated (north-south) dimen-
sion presumably act to focus thermal-fluid dis-
charge in the deeply incised valleys of the Western
Cascades. Nevertheless, comparison of simulated
and measured heat-transfer rates is a useful test of
the simulated results.

In advection-dominated simulations that match
the observations reasonably well (figs. 28 and 33B),
rates of advective heat transfer from the Quater-
nary arc to the Western Cascades range from 0.7 to
1.8 MW per kilometer of arc length. These values
encompass the length-normalized measured value
of 0.9 MW/km arc length. Our cross sections
include hot-spring areas, and these simulated heat-
transfer rates allow us to match observed conduc-
tive heat-flow values that are considerably in
excess of 100 mW/m2. A lower rate of about 0.5
MW/km arc length is sufficient to support conductive
heat-flow of about 100 mW/m?2 between Breitenbush
Hot Springs and the Quaternary arc (fig. 24D).
Such relatively low advective heat-transfer rates
might be more typical of the areas between hot-
spring groups.

As discussed in the section “Thermal Waters,”
thermal-fluid residence times are only weakly
constrained by the available data. Sulfate-water
isotopic equilibrium implies minimum residence
times of 40 to 2,000 years, and our interpretation
of the stable-isotope data implies maximum resi-
dence times of less than 10,000 years. Simulated
volumetric flow rates (vq) in the thermal aquifers
are on the order of one meter per year (for ex-
ample, fig. 33B), and similar rates are required to
maintain the elevated thermal-aquifer temperature
observed at heat-flow site 61 (fig. 17). Fluid par-
ticle velocities are approximated by vg4/¢, where ¢
is effective porosity. Thus for ¢ equal to 0.02 (table
10), fluid velocities in the thermal aquifer are
about 50 m/year, and thermal-aquifer residence
times are a few hundred years. Rates of vertical
recharge through the less permeable layers that
confine the thermal aquifer are much lower, so
that simulated particle velocities are as low as 0.1
m per year, and total residence times exceed
10,000 years. The addition of localized conduits for
deep recharge (figs. 32B, D; 33B) reduces total resi-
dence times to less than 1,000 years. If our inter-
pretation of the stable-isotope data is correct,
recharge to thermal aquifers must occur through
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discrete zones with relatively high vertical perme-
ability. Such vertical conduits might be created by
intrusions or by normal faulting.

COMPARISON WITH OTHER VOLCANIC-ARC
AREAS

Both in central Oregon and in southern British
Columbia (Lewis and others, 1988), abrupt in-
creases in near-surface conductive heat flow are
located well seaward (west) of the active volcanic
zone. A common explanation seems likely. In each
case, other workers (Blackwell and others, 1982a,
1990a; Lewis and others, 1988) have proposed a
magmatic origin for the increase in heat flow. How-
ever, in each case the heat-flow increase coincides
with the major discharge area for regional ground-
water flow. In Oregon, the heat-flow transition
coincides with a belt of hot springs in the Western
Cascades (for example, Blackwell and others,
1982a, fig. 8), and in British Columbia it is located
at the heads of fjords (Lewis and others, 1988, figs.
2 and 4) that represent the base level for ground-
water flow. Systematic collection of water-chemistry
data in British Columbia would help to
determine whether a variant of the lateral-flow model
(fig. 18A) can explain the Canadian observations.

Comparison with better-explored arcs provides
some perspective on geothermal resource estimates
for the central Oregon Cascade Range. The Taupo
volcanic zone (TVZ) of New Zealand is petrologi-
cally and geomorphically very different from the
Cascade Range: the dominantly rhyolitic eruptive
products fill a broad structural and topographic de-
pression. However, it is perhaps the only volcanic-
arc segment where heat-discharge rates are as well
known as in central Oregon. Table 11 compares
length-normalized heat-discharge rates and
resource estimates for the TVZ and central Oregon.
Rates of volcanic production, volcanic heat dis-
charge, and hydrothermal heat discharge are
approximately an order of magnitude higher in the
TVZ; the ratio of hydrothermal to volcanic heat dis-
charge is larger. The New Zealand Department of
Scientific and Industrial Research has estimated
that the geothermal power potential of the TVZ (6
MW /km; Lawless and others, 1981) amounts to
about one-third of the natural heat discharge (20
MW /km; Hedenquist, 1986). In contrast, the power
estimates of Black and others (1983) for central
Oregon (6 to 900 MW /km) are 4 to 500 times the
natural heat discharge (about 2 MW /km). The
relatively conservative New Zealand estimate is
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TaBLE 11.— Heat discharge and geothermal resource estimates for central Oregon Cascade Range and Taupo volcanic zone

[All rates are length-normalized. Production and heat-discharge rates for the TVZ were summarized by Hedenquist (1986). Estimates of geother-
mal potential are from Black and others (1983) and Lawless and others (1981). m.y., million years; MW, megawatts thermal, MWe, mega-

watts electrical]

Cascade Range
(length = 135 km)

Taupo volcanic zone
(length = 250 km)

Volcanic production..........ccocvveecceverenrersisresseseinrsseseereerenesnesnens

Volcanic heat discharge.........ccceovvvervenrenirnnninieinninreinninenneen
Hydrothermal heat discharge.........ccccocevvvvvveneereniererenereneirenes
Hydrothermal:volcanic heat discharge (ratio) ..........cccoeverennn.
Estimated geothermal potential ..........ccccooeirvivienennrrnreernrinnn
Estimated geothermal potential : natural heat discharge (ratio).......
Current geothermal power production ...........ccceecervverrervecenennen

................ 3-6 km3m.y. 33 km%/m.y.
(basaltic andesite) (rhyolite)
................ 0.6 MW 4 MW
................ 1.1 MW 16 MW
................ 2 4
................ 6-900 MWe 6 MWe
4-500 0.3
................ 0 MWe 1 MWe

based on extensive research drilling and ongoing
exploitation of three geothermal fields. Perhaps the
published resource estimates for central Oregon
are overly optimistic.

SUMMARY

The Cascade Range in central Oregon is charac-
terized by relatively high Quaternary volcanic ex-
trusion rates and hot-spring discharge rates and by
high conductive heat flow. Extrusion rates and hot-
spring discharge rates decrease both to the north
and south, and conductive heat flow decreases to
the north and possibly to the south.

All hot springs in the study area (between lat 44°
and 45°15' N.) discharge from Miocene or Oligocene
rocks at elevations of 440 to 680 m; there are no
hot springs in the Quaternary arc. The hot springs
are in the deeply incised valleys of major streams
that originate in the Quaternary arc. The presence
of hot springs within a relatively narrow elevation
range implies that topography is a major control on
their location; most of the hot springs are also
located near the surface exposures of permeable
structurally or stratigraphically controlled conduits.

The isotopic composition of thermal waters in the
Western Cascades is similar to that of meteoric
waters at elevations of 1,350 to 1,850 m. Recharge
at elevations of 1,350 to 1,850 m implies recharge
within the Quaternary arc, because only small
areas outside the Quaternary arc reach such eleva-
tions. The isotopic composition of the Western
Cascade thermal waters can also be explained in
terms of local recharge under colder (Pleistocene)
climatic conditions. Because the Western Cascade
hot springs are located at sites that would tend to
capture regional ground-water flow from the

Quaternary arc, we prefer to explain their isotopic
composition in terms of recharge at higher eleva-
tions during the Holocene.

Commonly used geothermometers (silica, Na-K-
Ca, and SO,-H,0) give disparate results when
applied to the Na-Cl and Na-Ca-Cl waters of the
Western Cascades. However, the SO,-H,0 isotope
equilibrium and anhydrite-saturation temperatures
for these waters are similar, suggesting that the
S0,-H,0 temperatures (117-181°C) are the best
indicators of thermal-fluid temperatures at depth.

Determinations of hot-spring discharge by a chloride-
flux method indicate discharge rates that are gen-
erally higher than those reported previously. The
product of hot-spring discharge, density, heat
capacity, and the difference between a chemical
geothermometer temperature and a reference tem-
perature is a measure of advective heat transport
by a hot-spring system. The total heat discharge
for the hot-spring systems in the study area is
about 148 MW, which represents a significant frac-
tion of the regional heat budget.

These isotopic data and heat-discharge measure-
ments indicate that gravitationally driven thermal-
fluid circulation transports significant amounts of
heat from the Quaternary arc into older Western
Cascade rocks. This pattern of regional ground-
water flow profoundly affects near-surface conduc-
tive heat flow. The Quaternary arc and adjacent 2-
to 7-Ma volcanic rocks constitute a large area of
low-to-zero near-surface conductive heat flow that
results from downward and lateral flow of cold
ground water. In contrast, near-surface conductive
heat flow is anomalously high where rocks older
than about 7 Ma are exposed in the eastern part of
the Western Cascades physiographic subprovince.
The thickness of the zone of low-to-zero conductive
heat flow is poorly known and presumably highly
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variable; it may thicken significantly beneath topo-
graphic highs. The relatively well documented heat-
flow high in the Breitenbush Hot Springs area may
be largely attributable to hydrothermal circulation.

A heat-budget analysis shows that sufficient heat
is removed advectively from rocks younger than
about 7 Ma to explain the anomalously high heat
discharge measured on the flanks of the Cascade
Range. The magnitude of relatively low-temperature
advective heat discharge, the greatest source of
uncertainty in the heat budget, is estimated by dif-
ference. The total heat-flow anomaly can be ex-
plained in terms of magmatic intrusion at rates of
9 to 33 cubic kilometers per kilometer of arc length
per million years; the required intrusion rate
varies depending on the degree of cooling assumed.
These intrusion rates imply an intrusion-to-
extrusion ratio in the range of 1.5 to 11.

Two alternative conceptual models have been
proposed to explain the near-surface heat-flow
observations. The models involve (1) an extensive
midcrustal magmatic heat source underlying both
the Quaternary arc and adjacent older rocks or (2)
a relatively narrow, deep heat-flow anomaly that
expands laterally at shallow depths due to ground-
water flow (the lateral-flow model). Relative to the
midcrustal heat source model, the lateral-flow
model suggests a more limited geothermal resource
base, but a better defined exploration target. Re-
gional gravity, magnetic, and electrical geophysical
data fail to distinguish between these alternative
models.

Deep drilling in the areas of high heat flow in
the older rocks could indicate which model is more
appropriate for the near-surface heat-flow data. In
such areas, uniformly high conductive heat flow
would be consistent with the midcrustal heat
source model, and reduced heat flow below zones of
active ground-water circulation would be consistent
with the lateral-flow model. The data from heat-
flow site 61 (fig. 17) show reduced heat flow below
a thermal aquifer, but the temperature profile can
be matched with either a high (greater than 100
mW/m?) or low (60-70 mW/m?2) background heat
flow, depending on the longevity of the hydro-
thermal system.

We simulated ground-water flow and heat trans-
port through two generalized geologic cross sec-
tions west of the Cascade Range crest: one in the
Breitenbush area, where there is no evidence for
major arc-parallel normal faulting, and one in the
McKenzie River drainage, where major graben-
bounding faults exist. The alternative conceptual
models were simulated by varying the distribution
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of deep heat sources. The results show that either
model for the deep thermal structure can satisfy
the near-surface thermal observations, and they
also provide some constraints on the regional per-
meability structure: the bulk permeability of the
youngest (less than 2.3 Ma) rock unit simulated is
estimated to be about 10714 m?2; that of the oldest
(greater than 18 Ma) to be about 10~17 mZ2. The
near-surface heat-flow observations in the
Breitenbush area are most readily explained in
terms of lateral heat transport by regional ground-
water flow. Given significant advective heat trans-
port, the deep thermal structure cannot be
uniquely inferred from the available data. The
sparser thermal data set from the McKenzie River
area can be explained either by deep regional
ground-water flow or by a conduction-dominated
system, with most ground-water flow confined to
Quaternary rocks and fault zones.

The actual thermal structure of the Oregon Cas-
cade Range is probably more complex than that
represented by either of the models considered
here. A fuller understanding of hydrothermal activ-
ity would require additional drill-hole data. Quan-
titative data regarding the deep permeability
structure, which are critical to an understanding of
hydrothermal circulation, are virtually nonexistent.
Sets of permeability tests in wells with changing
temperature gradients, like that observed at heat-
flow site 61, would be particularly useful. Careful
comparison with other, better-explored arcs may
also prove productive. A comparison of length-
normalized heat-discharge rates and resource esti-
mates for the Taupo volcanic zone of New Zealand
and central Oregon suggests that published resource
estimates for central Oregon are optimistic.
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